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1. Introduction 

1.1 Aim 

This report constitutes Part IV in a series of reports examining extreme precipitation events 
in South Asia supporting climate services for the water and hydropower sectors and 
contributes to the Climate Analysis for Risk Information and Services in South Asia 
(CARISSA) Work Package of the Asia Regional Resilience to a Changing Climate (ARRCC) 
programme. 

This report focuses on RX1day precipitation extremes in Nepal, defined as the maximum 
daily total precipitation accumulation over a given analysis period. Within the context of 
hydropower, high precipitation accumulation events over a period of 1 day (and indeed over 
shorter periods) have the potential to cause damage to hydropower infrastructure. Damage 
to infrastructure because of precipitation extremes is most often associated with rainfall 
accumulation occurring in the monsoon season. Further references to precipitation extremes 
therefore specifically relate to RX1day precipitation accumulations that occur during the 
Nepal monsoon season, June to September (JJAS).  Note that total precipitation includes 
both liquid and solid (ice) forms.   

The report provides estimates of both present-day extremes and future changes in extreme 
precipitation under the Representative Concentration Pathways RCP4.5 and RCP8.5 for 
mid-century (2050s) and end-of-century (2080s) periods over Nepal. The results from both 
sets of analysis are summarised in the final section, with conclusions and recommendations 
on how the findings can be used. 

1.2 Context & Prior Work 

To the best of our knowledge, there is very limited prior work examining how precipitation 
extremes are projected to change under future climate scenarios in Nepal.  A study 
examining the Upper Indus, Ganges, and Brahmaputra River basins (Wijngaard et al., 2017) 
showed that an increase in the magnitude of climatic means and extremes are likely by the 
end of the 21st century, and that climatic extremes show a greater increase than climatic 
means. However, climate data was based on statistically downscaling four selected global 
climate models (GCMs), (inmcm4, e.g. Volodin et al., 2010) which poorly represents the 
weather and climatic processes associated with the South Asia monsoon (see Richardson 
2021 and Section 3.2 for further details). Rajbhandari et al. (2016) also look at an envelope 
of four GCMs from the 5th Phase of the Coupled Model Intercomparison Project (CMIP5, 
Taylor et al., 2012) to examine changes over the Koshi basin and conclude that average 
JJAS total precipitation will increase by between 10 and 20 % across RCP4.5 and RCP8.5 
scenarios, though do not provide analysis on changing extremes..  

Of studies that specifically consider the impacts of changing precipitation on the Himalayan 
hydropower sector, Shirsat et al. (2021) also use an envelope-based approach and examine 
two ensembles of five GCMs (containing two GCMs rejected in Section 3.2).  They show that 
the uncertainty in projected precipitation changes results in changes to annual average 
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streamflow of -12 to 15% (RCP4.5) and by -19 to 48% (RCP8.5).  In the Bagmati River Basin, 
Shrestha et al. (2021) look at three regional climate model (RCM) simulations from the Co-
Ordinated Regional Downscaling Experiment (CORDEX) South Asia initiative and conclude 
that precipitation in the wet season will decrease within a range of 0 to -16%, with an 
associated reduction in hydropower electricity production of up to -13%. 

As in previous parts of this series of reports (Richardson, 2021; Steptoe, 2022), our focus is 
driven by stakeholder requirements, so we analyse the maximum 1-day precipitation 
(RX1day) that occurs within each Nepal monsoon season over multiple years of the baseline 
and future climate periods. We acknowledge that this is only part of the hazard analysis 
required to fully understand the chain of cascading hazards that encompasses flood risk in 
Nepal (e.g. Maharjan et al., 2021). 

The report has two distinct parts, each with their own methodological approach:  

• In Section 2, we make a quantitative best estimate of extreme precipitation in the 
present day climate, based on an analysis of four observations-based data sources 
(the selection of which is detailed in Steptoe (2022);  

• In Section 3, we estimate future changes in extreme precipitation during the monsoon 
for future periods under RCP4.5 and RCP8.5 scenarios from CMIP5 and CORDEX 
model simulations drawing on results of the process-based evaluation presented in 
Richardson (2021).  

2. Present-day extreme precipitation  

2.1 Methods 

Using the four data sets analysed in Steptoe (2022), MSWEP v2.8, HAR v2, IMDAA and 
GloSea5 N512, we construct a data blending framework based on Generalised Additive 
Models (GAMs, e.g. Hastie & Tibshirani, 1990; Wood, 2017, 2020) to undertake extreme 
value analysis of RX1day JJAS block-maximaa extreme precipitation , modelled as a 
Generalised Extreme Value (GEV) distribution: 

 𝑌𝑠,𝑡,𝑚 ∼ 𝐺𝐸𝑉(𝜇𝑠,𝑡,𝑚, 𝜎𝑠,𝑡,𝑚, 𝜉𝑚) (1) 

 𝜇𝑠,𝑡,𝑚 =  𝛽0 +  𝑓(𝑦𝑒𝑎𝑟(𝑡)) +  𝑔(𝑙𝑜𝑛(𝑠), 𝑙𝑎𝑡(𝑠)) + ℎ(𝑙𝑜𝑛(𝑠), 𝑙𝑎𝑡(𝑠), 𝑢𝑚
(𝜇)

) +  𝜖𝑖 
(2) 

 log (𝜎𝑠,𝑡,𝑚) =  𝛾0 +  𝑓(𝑦𝑒𝑎𝑟(𝑡)) + 𝑔(𝑙𝑜𝑛(𝑠), 𝑙𝑎𝑡(𝑠)) + ℎ(𝑙𝑜𝑛(𝑠), 𝑙𝑎𝑡(𝑠), 𝑢𝑚
(𝜎)

)

+  𝜖𝑖 

(3) 

 
a A peak-over-threshold approach could also be applied, but we find the block maxima approach 
convenient to reduce data volumes sufficiently to allow reasonable model fitting time on the available 
computational resources. 
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 𝑙𝑜𝑔𝑖𝑡(𝜉𝑚) = 𝛿0 + 𝑢𝑚
(𝜉)

+  𝜖𝑖 
(4) 

 

where 𝑌𝑠,𝑡,𝑚 represents RX1day precipitation extreme observations as a GEV distribution 

with 𝜇𝑠,𝑡,𝑚 (location), 𝜎𝑠,𝑡,𝑚 (scale) and 𝜉𝑚 (shape) parameters, that vary in space (across 

𝑙𝑜𝑛 = [79.63, 88.07]°E and 𝑙𝑎𝑡 = [26.37, 30.35]°N, giving grid cells 𝑠 = 1 … 450), time (for 
𝑦𝑒𝑎𝑟 = [1979, 2020], giving 𝑡 = 1 … 42) and observational data sets (𝑚 = 1 … 4)b.  The 𝑌𝑠,𝑡,𝑚 

GEV is modelled using a hierarchical GAM (e.g. Pedersen et al., 2019) with intercepts 
(𝛽0, 𝛾0, 𝛿0) and selected covariates accounting for long-term variability in time 𝑓(𝑦𝑒𝑎𝑟(𝑡)), 
variability in space 𝑔(𝑙𝑜𝑛(𝑠), 𝑙𝑎𝑡(𝑠)) and model specific deviations ℎ(𝑙𝑜𝑛(𝑠), 𝑙𝑎𝑡(𝑠), 𝑢𝑚) that 

describe how each individual dataset estimate 𝑚 deviates from the general spatial field 𝑔(∙) 
(referred to as a ‘random effect’ in some statistical modelling contexts).  To simulate 
uncertainty from unobserved datasets (i.e. imagining we had more than four observed 

datasets) in 𝑢𝑚
(∙)

 group terms, the random (or group) effects are further simulated as: 

 𝑢𝑚
(𝜇)

 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜇
2) (5) 

 𝑢𝑚
(𝜎)

 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜎
2) (6) 

 𝑢𝑚
(𝜉)

 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜉
2) (7) 

where the uncertainty associated with different observed datasets can be integrated out for 
each GEV term: 

 
𝜇𝑠,𝑡 =  ∫ 𝜇𝑠,𝑡,𝑚  𝑑𝑢𝑚

(𝜇)

𝑢𝑠,𝑚
(𝜇)

 
(8) 

so that predictions are finally based on: 

 𝑌𝑠,𝑡 ∼ 𝐺𝐸𝑉(𝜇𝑠,𝑡 , 𝜎𝑠,𝑡 , 𝜉) (9) 

Model fitting was performed using the R package mgcv of (Wood, 2003, 2017). Spatial terms 

are defined as isotropic Duchlon splines (Duchon, 1977; Miller & Wood, 2014) with first 
derivative penalties that aim to reduce collinearity between the global smoother (𝑔(∙)) and 

the group-specific terms (ℎ(∙)), as detailed in Pederson et al. (2019).  Although topography 
was found to be a significant predictor of extreme precipitation, it was also found to be highly 
colinear (> 0.9) with the spatial terms. As this can lead to substantial underestimates of the 
variance of fitted model terms (Ramsay et al., 2003), topographic effects are excluded in the 

 
b For GloSea5 data, we use all 24 ensemble members weighting them so that each observation from 

an individual ensemble member contributes 
1

24
 to the model fit. This way the GloSea5 dataset has 

the same influence on the final model fit as other observational datasets with fewer data points. 
 

https://cran.r-project.org/web/packages/mgcv/index.html
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final model fit.  In the final model predictions, time varying coefficients (i.e. 𝑓(𝑦𝑒𝑎𝑟(𝑡)) terms) 

are set to zero, to exclude the long-term RX1day variability. 

The smooth model parameters are estimated using restricted maximum likelihood (REML), 
and we take a Bayesian view of the model as detailed in Wood (2017).  We interpret the 
posterior distribution of extreme precipitation (that incorporates the uncertainty due to 
differences in the four observed estimates of extremes) in terms of an equal-tailed span of 
values that are most credible, referred to as the credible interval (CI) based on estimations 
of the 2.5th and 97.5th percentiles of posterior estimates (Kruschke, 2015).  The CI 
represents the range of extreme precipitation estimates that are most credible given the input 
datasets.  A wide CI represents more uncertainty is the model estimates, which arises from 
greater disagreements between the observed datasets.  A schematic of this hierarchical 
model is visualised in Figure 1. 

Model diagnostic and validation plots can be found in Appendix A.  In particular, Figure 25 
compares the different model datasets against the GAM model ‘best estimate’ for 12 
randomised grid locations, showing the effect of model fitting based on the 4 datasets. 
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Figure 1 Schematic illustration of the data blending framework based on a hierarchical Generalised 

Additive Model (GAM).  The GAM is used to combine data from four different datasets of extreme 

precipitation (top) into a single best estimate. At each grid cell the final (posterior) Generalised 

Extreme Value (GEV) model of  𝑌𝑠,𝑡 (Eq. 9) incorporates uncertainty due to spatial variability across 

each different dataset estimate in the location (𝜇𝑠,𝑡,𝑚, Eq. 2) and scale (𝜎𝑠,𝑡,𝑚, Eq. 3) terms, and model 

specific estimates of the shape (𝜉𝑚, Eq. 4) parameter.  Visualisations of model estimates of location 

and shape parameters, and the resulting posterior 𝑌𝑠,𝑡 estimate are shown in the histograms. 



 

 

Delivery Partners: 
 

 

 
 

Page 6 of 44 

 

 

2.2 Best estimate of historical climate extremes 

Here we present results of the estimates of present-day precipitation extremes. Using 
available data, we present the central estimate (50th percentile) and upper-case estimate 
(99th percentile) for precipitation extremes, and the range of uncertainty in the median (the 
2.5 – 97.5th percentile credible interval (CI) range).  All estimates represent area averaged 
precipitation extremes, at the same resolution of the input data: in this case 0.35° x 0.23° (~ 
800 km2).   

Figure 2 shows the spatial variability of the RX1day JJAS estimate for return periods of 2, 20 
and 100 years.  Extreme precipitation is strongly associated with topography, with the Terai 
areas of Nepal generally seeing greater precipitation extremes than the Himalayan areas. 
Within the Terai, southern parts of Sudurpashchim, Gandaki, Madhesh and Province 1 have 
1-in-2 year RX1day values of 110 – 200 mm (50th – 99th percentile). For 1-in-100-year events, 
parts of Sudurpashchim may experience RX1day extremes in excess of 350 mm, with 
Madhesh widely seeing 320 – 350 mm. Uncertainty for the Terai and mountain areas is 
generally ± 0 – 40% of the median value for 1-in-2 year events, and as expected the level of 
uncertainty increases with return period.  Compared to two other common observed datasets 
not used in the model fitting (Figure 3), ERA5 (Hersbach et al., 2018) and Aphrodite-2 
(Yatagai et al., 2012), the spatial distribution of RX1day values are similar but our best fit 
blended estimates are uniformly wetter for return periods greater than 1-in-2 years.  Figure 
25 suggest that higher precipitation values in the blended data tend to be driven by the HAR 
and IMDAA datasets, both of which have relatively high-resolution source data.  The wetter 
return periods could reflect the improved resolution and the associated microphysics that can 
be resolved over the complex Nepal topography, especially given that differences between 
ERA5 and the blended data appear most prominent over the mountain regions (more obvious 
for lower thresholds). 

An alternative visualisation to Figure 2, Figure 4 plots the likelihood of occurrence (in terms 
of return periods) for given RX1day thresholds.  This visualisation shows areas of the same 
return period for given thresholds as the same colour.  These plots show that the Terai and 
hill regions are likely to see area-averaged RX1day accumulations of 75 mm more-
frequently-or-equal-to once every 2 years.  For higher thresholds, areas of the Terai still have 
the potential to experience 100 mm at least every other year.  For 140 mm area-averaged 
RX1day accumulation (which triggers a DHM precipitation warning), there is potential for 
most Terai areas (including the cities of Dhangadhi, Nepalganj, Siddharthanagar, Birganj and 
Rajbiraj) to experience this threshold once every 2 – 5 years even in the median estimate. 

Comparing these thresholds against ERA5 and Aphrodite-2 (Figures 5 and 6), shows that 
the blended data uniformly predicts all 3 thresholds to occur at least 100-times more likely 
than suggested by Aphrodite-2 data alone.  Further work is required to identify what causes 
this substantial difference, but it could be driven by the relatively sparse gauge data coverage 
that contributes to Aphrodite-2 over Nepal (see Steptoe, 2022).  Differences with ERA5 are 
more complex.  Our blended dataset suggests that thresholds of 75 and 100 mm occur more 
frequently than ERA5 in the Himalayas and some parts of the Terai, but these thresholds are 
generally reached less frequently that ERA5 in the middle mountains.  Looking specifically 
at the 15 most populated cities in Nepal, Figure 7 shows exceedance probability curves for 
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a range of RX1day values up to 300 mm. As in Figure 5, Aphrodite-2 exceedance 
probabilities are uniformly lower than our blended data and ERA5.  For low return period (≤ 
1-in-5 year events) ERA5 tends to predict greater RX1day values than our blended dataset, 
but this is quickly overtaken for return periods > 1-in-5 years.
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Figure 2 Spatial variability of JJAS RX1day return periods estimates in mm for the median (a-c) and 99th percentile (d-f), and the variability (uncertainty) 

associated with the prediction at each grid cell standardised as a percentage of the median (g-i).  The RX1day estimate at each grid cell is representative of an 

area average over ~800 km2. Grid cells with an area average < 50 mm are grey and grid cells ≥ 350 mm are black. 
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Figure 3 Comparison of spatial variability of median (50th percentile) JJAS RX1day return periods estimates for the best fit blended dataset (a – c, as for 

Figure 2) against ERA5 (d – f) and Aphrodite-2 (g – i). 
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Figure 4 Spatial variability of JJAS RX1day exceedance probability estimates for thresholds of 75 

mm (a, d), 100 mm (b, e) and 140 mm (c, f) for median (a – c) and 99th (d – f) percentiles. The return 

periods estimate at each grid cell is representative of an area average over ~800 km2.  
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Figure 5 Comparison of median (50th percentile) exceedance probabilities of the best fit blended dataset (a – c, as for Figure 4) against ERA5 (d – f) and 

Aphrodite-2 (g – i).  Where a dataset does not reach a given threshold at any return period (i.e. there is no occurrence, in this figure only Aphrodite-2) the grid 

cell is left unshaded. 
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Figure 6 Comparison of median (50th percentile) exceedance probabilities of the best fit blended dataset (a – c, as for Figure 5), but showing the difference in 

frequency against ERA5 (d – f) and Aphrodite-2 (g – i) as a factor of the best-fit blended data.  Frequency differences <1 indicate that the return period for a 

given threshold is less frequent than the blended data. Frequency differences >1 indicate that the return period for a given threshold is more frequent than the 

blended data. 
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Figure 7 Excedance probability curves for 15 of the most populated cities in Nepal.  Return period estimates across a range of JJAS RX1day values from 0 – 

300 mm from our blended data set are shown in green with their assocated  2.5th and 97.5th percentile intervals marked as dashed lines.  Comparative curves 

for ERA5 and Aphrodite-2 (regridded to match the best fit blended data resolution) are shown in orange and purple respecitvely. Uncertanty intervals for the 

ERA5 and Aphdrodite-2 data are not shown, but are an order of magnitdue smaller than for our blended dataset.
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3. Future changes in extreme precipitation  

A set of plausible scenarios of future change in extreme precipitation during the monsoon 
season for Nepal have been selected. Here we provide explanation of the selection process 
and present the scenarios, using analysis of a large ensemble of both GCM and RCM 
projections. Building on a process-based evaluation, focusing on how well available models 
simulate the relevant processes that drive extreme precipitation in the region (Richardson, 
2021), subsequent analysis aims to provide a representative set of plausible scenarios for 
extreme precipitation change across Nepal for the 2050s and 2080s under different future 
greenhouse gas concentration pathways. The scenarios have two key purposes: 

1. To provide information about future changes in extreme precipitation in Nepal for 
communicating with relevant stakeholders. 

2. To provide a recommended set of climate model simulations to drive hydrological 
models (and potentially other climate impact models) to translate changes in extreme 
precipitation into information about surface run-off, river flow and other hydrological 
variables.  

3.1 Projected changes from an ensemble of global and regional 

climate model simulations 

The model simulations considered in this study include 30 GCM simulations from CMIP5 and 
17 dynamically downscaled RCM projections from CORDEX (Giorgi & Gutowski, 2015) for 
the South Asia domain. The RCM simulations from CORDEX take the output from a subset 
of the CMIP5 GCMs and provide higher resolution output, better accounting for local factors 
such as topography. These two ensembles of climate model projections were used to inform 
the IPCC 5th and 6th Assessment Reports (IPCC, 2013, 2021). Although the more recent 
CMIP6 model simulations are now available, these were not available at the time of the model 
evaluation (Richardson, 2021), and the RCMs have not yet been used to downscale the 
CMIP6 projections. 

Figures 8 and 9 show projected changes in the maximumc daily precipitation (RX1day) during 
the JJAS season in Nepal from the 30 CMIP5 GCM simulations and 17 CORDEX WAS-44 
model simulations for the 2050s (using 30 years of data from 2041 to 2070), under the 
RCP4.5 greenhouse gas concentration pathway. Similar maps for the 2080s (using 30 years 
of data from 2071 to 2100) under RCP4.5 are shown in Figures 10 and 11, and likewise for 
the RCP8.5 greenhouse gas concentration pathway in Figure 12 to Figure 15.   

 
c The maximum RX1day over the 30-year analysis period is selected to focus the analysis on 
extreme rainfall. We note that different results may arise over shorter analysis periods, or if the mean 
value over the analysis period were selected instead. 
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Figure 8 Maps of projected change in maximum JJAS RX1day for the 2050s under RCP4.5 for 30 

CMIP5 GCM simulations. The colour of the model name represents the evaluation category from the 

assessment in Richardson (2021).  
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Figure 9 Maps of projected change in maximum JJAS RX1day for the 2050s under RCP4.5 for the 17 RCM simulations from CORDEX WAS-44. Projected 

changes from the driving GCM simulations are also included, and the 17 RCM projections are arranged by their driving GCM (columns) and the RCM used 

(rows). The colour of the driving GCM model name represents the evaluation category from the assessment in Richardson (2021).
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Figure 10 Maps of projected change in maximum JJAS RX1day for the 2080s under RCP4.5 for 30 

CMIP5 GCM simulations. The colour of the model name represents the evaluation category from the 

assessment in Richardson (2021). 
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Figure 11 Maps of projected change in maximum JJAS RX1day for the 2080s under RCP4.5 for the 17 RCM simulations from CORDEX WAS-44. Projected 

changes from the driving GCM simulations are also included, and the 17 RCM projections are arranged by their driving GCM (columns) and the RCM used 

(rows). The colour of the driving GCM model name represents the evaluation category from the assessment in Richardson (2021).
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Figure 12 Maps of projected change in maximum JJAS RX1day for the 2050s under RCP8.5 for 30 

CMIP5 GCM simulations. The colour of the model name represents the evaluation category from the 

assessment in Richardson (2021). 
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Figure 13 Maps of projected change in maximum JJAS RX1day for the 2050s under RCP8.5 for the 17 RCM simulations from CORDEX WAS-44. Projected 

changes from the driving GCM simulations are also included, and the 17 RCM projections are arranged by their driving GCM (columns) and the RCM used 

(rows). The colour of the driving GCM model name represents the evaluation category from the assessment in Richardson (2021).  
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Figure 14 Maps of projected change in maximum JJAS RX1day for the 2080s under RCP8.5 for 30 

CMIP5 GCM simulations. The colour of the model name represents the evaluation category from the 

assessment in Richardson (2021). 
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Figure 15 Maps of projected change in maximum JJAS RX1day for the 2080s under RCP8.5 for the 17 RCM simulations from CORDEX WAS-44. Projected 

changes from the driving GCM simulations are also included, and the 17 RCM projections are arranged by their driving GCM (columns) and the RCM used to 

downscale that projection (rows). The colour of the driving GCM model name represents the evaluation category from the assessment in Richardson (2021). 
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The maps show a general increase in maximum RX1day in the future climate, with larger 
increases in general under the RCP8.5 greenhouse gas concentration scenario and for the 
2080s. However, there is large spatial variability across Nepal in most of the model 
projections, with many showing both increases and decreases across the region, and there 
is no consistent pattern of change across the model projections. Under the RCP8.5 scenario 
in the 2080s (e.g., Figure 14 and Figure 15), there is a more consistent increase across the 
model projections but the magnitude of increases still varies widely, with some showing very 
large increases and some showing little change.  

Furthermore, these maps also show that the RCM simulations create very different internal 
climates that are largely unconstrained from the driving GCM (e.g. compare projected 
changes from the GCM with the RCM downscalings in Figures 9, 11, 13 and 15). This 
emphasizes the large natural variability and model dependence associated with extreme 
precipitation. This also justifies the focus of our analysis on dynamically downscaled 
projections that can better simulate these processes over statistical downscaling techniques. 

Although there is large spatial variability in the projected changes of maximum JJAS RX1day 
across Nepal, a spatial mean of the data is useful to calculate Nepal-average values and 
compare changes from across the model projectionsd. Figure 15 and Figure 16 show the 
spread of projected changes in maximum JJAS RX1day across all model simulations 
considered for the 2050s in the RCP4.5 and RCP8.5 pathways respectively. The specific 
values from these boxplots are presented in Appendix D. 

 

Figure 16 Boxplots of the projected change in JJAS maximum RX1day for the 2050s under RCP4.5 

(left panel) and RCP8.5 (right panel) from all 30 CMIP5 and 17 CORDEX WAS-44 model simulations. 

Blue boxplots show the results from the full ensemble of model simulations considered. The 

equivalent boxplots filtered by GCM assessment category are included for each RCP to demonstrate 

how the different GCMs contribute to the full spread of values. 

 
d A spatial mean is taken across a box of data around Nepal, as presented in Figure 8 to Figure 15, 
rather than extracting the values for the country shape to enable effective comparison between the 
CORDEX and CMIP5 data. This accounts for the low resolution of the CMIP5 models. 
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The blue boxplots (left-most boxplots) show that the majority of model projections show an 
increase in the spatially averaged maximum JJAS RX1day for both RCPs, but some model 
projections show a decrease. The smaller boxplots, to the right of the blue boxplots, show 
the spread of values from the green (well-performing), yellow and orange (use with caution), 
and red (poor-performing) categorised GCMs; the RCM model simulations are categorised 
by their driving GCM. This breakdown by GCM category shows that: 

• For RCP4.5 in the 2050s, the larger negative values come from the red categorised 
GCM simulations, which gives justification for discounting these values from the 
range of plausible values.  

• Across both RCPs in the 2050s, the green and yellow categorised GCM simulations 
span the majority of the full range of values (excluding the larger negative values in 
RCP4.5), giving justification for values represented by the upper tails of the boxplots, 
and the lower end of the range of values being close to zero. 

• The model projection identified as an outlier of the distribution (black dot for RCP8.5) 
comes from a model projection where the GCM is in the orange category meaning 
that it failed on some of the assessment metrics and should be used with caution. 

Similar boxplots for projected changes in maximum JJAS RX1day in the 2080s under both 
RCP4.5 and RCP8.5 are shown in Figure 17. The specific values from these boxplots are 
presented in Appendix D. These boxplots show: 

• A larger spread in values compared to those for the 2050s, particularly under RCP8.5. 

• The red categorised GCM simulations that should be excluded generally represent 
small increases, so are not representative of the full range of model projections. 

• For RCP4.5 in the 2080s there are some model simulations that project a decrease 
in maximum JJAS RX1day. The largest of these comes from a yellow categorised 
GCM simulation which has not had a full evaluation assessment and has relatively 
low resolution. One CORDEX model simulation that was driven by a green 
categorised GCM simulation projects a small decrease. There are no negative 
projections under RCP8.5, but some green categorised GCM simulations project very 
small increases. This again justifies the exclusion of large negative changes but the 
inclusion of a future scenario where there is little change compared to the present 
day. 

• The green categorised GCM simulations generally span the full range of projections 
for both RCPs, including the largest values for RCP8.5 which are classified as outliers 
of the full distribution. This gives justification for including a scenario that accounts for 
these very large increases, but with lower confidence. 
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Figure 17 Boxplots of the projected change in JJAS maximum RX1day for the 2080s under RCP4.5 

(left panel) and RCP8.5 (right panel) from all 30 CMIP5 and 17 CORDEX WAS-44 model simulations. 

Blue boxplots show the results from the full ensemble of model simulations considered. The 

equivalent boxplots filtered by GCM assessment category are included for each RCP to demonstrate 

how the different GCMs contribute to the full spread of values. 

3.2 Selecting a subset of models that represent the range of plausible 

changes 

A subset of model simulations that span the range of plausible projections in maximum JJAS 
RX1day for the two RCP pathways were selected. The criteria for selection included: 

• Prioritise RCM simulations, 

• model simulations that represent the range of projections across the RCPs and future 
time periods,  

• a preference for driving GCMs in the green category, as these model simulations best 
represent the processes that drive extreme precipitation in the region, 

• a preference to span all three RCMs in the CORDEX WAS-44, and a unique selection 
of GCM-RCM couplings to span the range of available options. 

The specific model simulations in each of the scenario selection categories are presented in 
Table 1 and the ordered values that were used to identify these models are included in 
Appendix C.  Projected changes in maximum JJAS RX1day from this subset of model 
simulations per RCP are plotted together in Figure 18 and the associated maps from these 
model simulations are shown in Figure 19.  
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Table 1 Model simulations selected for the subset that spans the range of plausible changes. 

Scenario selection category RCP 
Model simulation selected 

RCM GCM 

Model simulations representing 
the lower end of projected 
changes – the lowest change. 

RCP4.5 RegCM4-4 CSIRO-Mk3-6-0 

RCP8.5 RegCM4-4 CSIRO-Mk3-6-0 

Model simulations representing 
the upper end of projected 
changes – the largest change 
and often outliers of the 
distribution. 

RCP4.5 RegCM4-4 CanESM2 

RCP8.5 RCA4 IPSL-CM5A-MR 

Model simulations representing 
the second largest projected 
changes which are more 
representative of the upper 
quartile of model projections. 

RCP4.5 RCA4 IPSL-CM5A-MR 

RCP8.5 RCA4 CSIRO-Mk3-6-0 

Model simulations representing 
the middle of the range of 
projected changes 

RCP4.5 REMO2009 MPI-ESM-LR 

RCP8.5 RCA4 MPI-ESM-LR 

 

 

Figure 18 Changes in maximum JJAS RX1day for the 2050s and 2080s for the subset of CORDEX 

model simulations that span the range of plausible projections. The corresponding maps are shown 

in Figure 19. 
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Figure 19 Selected maps of representative projected changes of JJAS RX1day from the model subset. The numbers in the bottom right of each map panel 

show the spatial mean. 



 

 

Delivery Partners: 
 

 

 
 

Page 28 of 44 

 

3.2.1 A set of representative scenario pathways of changes in extreme 

monsoon precipitation in Nepal 

Results from this subset of model simulations were distilled into four plausible scenarios of 
changing maximum JJAS RX1day through the 21st century following the climate information 
distillation process presented in Daron et al. (2022). The four scenarios are plotted in Figure 
20 and descriptions given below: 

• ‘Little change’ scenario: little change in maximum JJAS RX1day in both the 2050s 
and 2080s; taken from the RegCM4-4-CSIRO-Mk3-6-0 model simulation. 

• ‘Moderate increases’ scenario: an increase in maximum JJAS RX1day of 15% by the 
2050s and 30% in by the 2080s, relative to the baseline climate; represents results 
from the middle of the range of projections. 

• ‘Large increases’ scenario: an increase in JJAS RX1day of 35% by the 2050s and 
60% in the 2080s, relative to the baseline climate; the upper quartile of the range of 
projections.  

• ‘Very large increases’ scenario: an increase in JJAS RX1day of 40% by the 2050s 
and 110% by the 2080s, relative to the baseline climate; represents the high end of 
the range of projections. 

 

 

Figure 20 Four plausible scenarios of future changes in daily maximum precipitation during the 

monsoon season in Nepal, spanning the range of model projections. 
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3.3 Best estimate of CORDEX future changes 

The CORDEX model simulations, presented in Section 3.1, can be further used to develop 

estimate absolute RX1day values, by applying a change factor approach (e.g. Anandhi et 

al., 2011) to the best observational data produced in Section 2. 

For this approach, a future RX1day estimate 𝑅𝑋1𝑑𝑎𝑦𝐹𝑈𝑇 is calculated as: 

 
𝑅𝑋1𝑑𝑎𝑦𝐹𝑈𝑇 = 𝑅𝑋1𝑑𝑎𝑦𝐻𝐼𝑆𝑇  ×  ( 

𝑅𝐶𝑀𝐹𝑈𝑇

𝑅𝐶𝑀𝐻𝐼𝑆𝑇
 ) 

(10) 

Where 𝑅𝐶𝑀𝐹𝑈𝑇 and 𝑅𝐶𝑀𝐻𝐼𝑆𝑇 are future RX1day estimates from selected CORDEX model 

simulations for RCP4.5 or RCP8.5 scenarios, and 𝑅𝑋1𝑑𝑎𝑦𝐻𝐼𝑆𝑇 are the GAM estimates 
presented in Section 2.  By further applying the GAM methodology used to produce 
𝑅𝑋1𝑑𝑎𝑦𝐻𝐼𝑆𝑇 (Section 2.1) to the CORDEX model simulations, we produce a best estimate of 
CORDEX RX1day that are spatially and temporally consistent. The formulation is almost 
identical to Equations (1) – (4), except we now have group level effects 𝑢𝑚 for 𝑚 = 1 … 17 
CORDEX model simulations with driving GCMs that are classified as being green or yellow 
(see Figure 15). CORDEX model simulations with driving GCMs classified as red or orange 
are excluded. Two separate statistical models are fitted for each RCP scenario, for future 
periods equal to 2050 and 2080. As for Section 2, 𝑅𝐶𝑀𝐹𝑈𝑇 and 𝑅𝐶𝑀𝐻𝐼𝑆𝑇 estimates are done 
on a 0.35° x 0.23° grid and based on JJAS block-maxima 

We summarise the change factors in Table 2. Although we calculate change factors at each 
grid box, the spatial variability is small (not shown) and we choose to summarise change 
factors as a Nepal mean value.  Table 2 shows that changes to smaller magnitude, more 
frequent RX1day extremes are likely to be greater (+40% for a 1-in-2 year event under 
RCP8.5 by 2080) than changes to larger magnitude, less frequent RX1day extremes (+21% 
for a 1-in-100 year event under RCP8.5 by 2080). A full breakdown of projected changes for 
each model simulation are shown in Appendix D. Figure 21 and Figure 22 show the changes 
factors from Table 2 applied to the observational estimates of Figure 2.  
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Table 2 Summary of JJAS RX1day change factors based on a subset of CORDEX model simulations 

with green or yellow diving GCMs. Projected changes represent the 50th percentile Nepal-mean 

value for RCP4.5 and RCP8.5 scenarios in 2050 and 2080 for 4 different return periods, from 

extreme value analysis of JJAS block-maxima. Change factors are rounded to the nearest percent. 

Return  
Period  
(years) 

RCP 2050 2080 

2 
RCP4.5 12% 21% 

RCP8.5 19% 40% 

20 
RCP4.5 7% 12% 

RCP8.5 11% 24% 

100 
RCP4.5 6% 11% 

RCP8.5 10% 22% 

200 
RCP4.5 6% 10% 

RCP8.5 9% 21% 
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Figure 21 Return period estimates for JJAS RX1day comparing the historical climate (a-c) with median changes under RCP4.5 for 2050 (c-f) and 2080 (g-i). 
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Figure 22 Return period estimates for JJAS RX1day comparing the historical climate (a-c) with median changes under RCP8.5 for 2050 (c-f) and 2080 (g-i). 
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4. Summary & Conclusions 

This report forms the culmination of a series of reports on understanding and quantifying 
extreme precipitation events in South Asia. It draws on the outputs of Parts I-III in the report 
series and focuses on quantifying the risk of extreme monsoon precipitation in Nepal to 
support engagement with stakeholders and planners in the hydropower sector in Nepal. 

We take a two-part approach to assess current and future changes to extreme 1-day 
precipitation accumulation (RX1day) in Nepal.  For the current climate, we build a blended 
dataset based on selected observational datasets (MSWEP v2.8, HAR v2, IMDAA and 
GloSea5) that contribute the best information over Nepal’s complex topography. We highlight 
that (in terms of precipitation averaged over ~800 km2): 

• The chance of high RX1day accumulations is generally greater in our blended 
datasets than in ERA5 or Aphrodite-2 alone.    

• Large parts of the Terai and Hill regions have the potential to see RX1day 
accumulations of 140 mm at least every 2 – 5 years. 

• Some parts of the Terai could receive one-day precipitation accumulations in excess 
of 350 mm once every 100 years. 

For the future climate, we build on our previous process-based evaluation to distil available 
climate model simulations into a set of four plausible scenarios of projected changes in 
maximum JJAS RX1day. We find that: 

• There is large spatial variability in the projected changes in maximum JJAS RX1day 
across Nepal. 

• The majority of model projections show an increase in maximum JJAS RX1day when 
averaged across Nepal, however there is a large spread in the magnitude of change. 

• The four scenarios identified that span the range of plausible projections range from 
little change in maximum JJAS RX1day by the end of the century to increases of over 
100%. 

We also estimated the most likely range for the changes in RX1day precipitation 
accumulation under RCP4.5 and RCP8.5 greenhouse gas concentration scenarios and find 
that: 

• Under RCP4.5 (by the end of the century) our best estimate for RX1day change is 10 
– 21%. Under RCP8.5 it is 21 – 40%. 

• Changes to more frequent low-threshold RX1day extremes are likely to be greater 
than changes to high-threshold less frequent RX1day extremes. 
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4.1 Limitations and future work 

For our analysis of present day extremes, a key limitation was the unavailability of 
comprehensive rain gauge data from DHM.  Although Aphrodite-2 and IMDAA datasets 
include some Nepal rain gauge data, we are anecdotally aware that these datasets do not 
include the full breadth of data collected by DHM.  Future work should seek to include this 
data.   For the purposes of hydrological modelling, our analysis is not temporally consistent 
at the scale of hydrological basins.  An adaptation of the HGAM fitting, working at basin 
scales, rather than grid-box scale could be a useful extension for the purposes of event-
based hydrological modelling. 

For future extremes, we recognise that the RCP4.5 and RCP8.5 greenhouse gas 
concentration scenarios are a limited sample of potential future changes. Future changes in 
greenhouse gas concentrations could reasonably be both higher or lower than either of these 
scenarios. Future work could include inclusion of higher resolution RCM simulations from the 
CORDEX CORE experiments, as well as CMIP6 GCM projections and any future regional 
downscalings of CMIP6 model simulations.   

4.2 Recommendations for the hydropower sector in Nepal 

The assessments of the risk of extreme monsoon precipitation both in the current climate 
and under a changing climate presented here can be used to inform long-term planning for 
the hydropower sector in Nepal.  

Improved understanding of the risk of extreme monsoon precipitation in the current climate 
can be used to inform improvements to the climate resilience of existing hydropower projects 
and operations. We have demonstrated that individual observational data products do not 
give accurate assessments of extreme precipitation events and that these estimates are less 
likely to be underestimated by combining multiple sources of data. We therefore recommend 
the use of multiple sources of data for quantifying precipitation return periods for an improved 
assessment of present-day risk. Ideally, these data sources should derive from several 
different collection methods, to avoid specific limitations inherent to them individually. 

This improved understanding of current risks can also help to inform the development and 
design of future hydropower plants, alongside the information provided here about how these 
risks may change in the future climate. The four plausible scenarios of projected changes in 
extreme monsoon precipitation, can be used to explore possible futures the hydropower 
sector will need to prepare for, ranging from little change relative to the current climate to a 
potential doubling in the magnitude of RX1day. This could be done in a qualitative manner 
in collaboration with stakeholders to explore what the different scenarios of projected 
changes might mean, such as through the use of Climate Risk Narrativese. Additionally, the 
scenarios can be used in a quantitative way to explore how the projected changes in 

 
e The scenarios were used to inform an interactive session on Climate Risk Narratives for Nepal at a 
workshop in July 2022, the outputs are available on the CARISSA website  

https://www.metoffice.gov.uk/services/government/international-development/climate-analysis-for-risk-information--services-in-south-asia-carissa
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precipitation translate into river flow and other variable relevant to the hydropower sector, 
through further collaboration with scientists and stakeholders in Nepal.  
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Appendix A. Data & Code Availability 

Data used in the analysis of present-day extremes is available as follows: 

• MSWEP v2.8: (Beck et al., 2019) Openly accessible (CC BY-NC 4.0) from 
http://www.gloh2o.org/mswep/  

• HAR v2: (Wang et al., 2021) Openly accessible from https://www.klima.tu-
berlin.de/index.php?show=daten_har2  

• IMDAA: (Rani et al., 2021) Openly accessible from 
https://rds.ncmrwf.gov.in/datasets  

• GloSea5 N512: (Scaife et al., 2019) Not openly accessible. Please contact the 
authors for data requests. 

Data use in the analysis of future extremes comes from openly accessible CORDEX South 
Asia domain.  Details on accessing CORDEX data are available at https://cordex.org/data-
access/.  

Data analysis in this report makes use of mgcv in R (available from https://cran.r-
project.org/web/packages/mgcv/index.html) and Iris in Python (available from 
https://github.com/SciTools/iris).  

 

  

https://creativecommons.org/licenses/by-nc/4.0/
http://www.gloh2o.org/mswep/
https://www.klima.tu-berlin.de/index.php?show=daten_har2
https://www.klima.tu-berlin.de/index.php?show=daten_har2
https://rds.ncmrwf.gov.in/datasets
https://cordex.org/data-access/
https://cordex.org/data-access/
https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/mgcv/index.html
https://github.com/SciTools/iris
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Appendix B. Statistical Model Evaluation Plots 

 

Figure 23 Quantile-quantile plot of model residuals, with 90% reference interval (grey shading) 

based on 50 simulations of the GAM specified in Equation 1.   

 

Figure 24 Evaluation locations for 12 randomised points in Nepal, used to compare GAM model fit 

with input data, shown in Figure 25. Background shading is the median 1-in-2 year RX1day estimate 

as in Figure 2. 
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Figure 25 Kernel density estimations of observed datasets (coloured) comparison to the simulated 

GAM model distribution (black), for the 12 random locations as specified in Figure 24.  X-axis values 

are grid area-averaged RX1day in mm. 
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Appendix C. Process-based evaluation flow diagram 

 

Figure 26: Schematic of best practice in a process-based evaluation process. Step 1 was conducted 

in Richardson (2021) to assess the capability of the CMIP5 GCMs. 
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Appendix D. Tables of projected changes in RX1day 

Table 3: Values of the projected change in JJAS maximum RX1day averaged over Nepal under 

RCP4.5. The data is sorted based on the value of the projected change in the 2080s. CMIP5 GCM 

names are coloured based on their assessment category from Richardson (2021) and the RCM used 

to generate the regionally downscaled projections from CORDEX are included in the RCM column or 

left blank if a GCM projection. 
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Table 4: Values of the projected change in JJAS maximum RX1day averaged over Nepal under 

RCP8.5. The data is sorted based on the value of the projected change in the 2080s. CMIP5 GCM 

names are coloured based on their assessment category from Richardson (2021) and the RCM used 

to generate the regionally downscaled projections from CORDEX are included in the RCM column or 

left blank if a GCM projection. 
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