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Executive Summary 

An assessment of 12 dynamical seasonal prediction systems is conducted, assessing 

their ability to predict South Asian seasonal precipitation during the two key monsoon 

seasons; southwest (June to September (JJAS)) and northeast (October to November 

(OND)). This research has been conducted as part of the UK-aid funded Asia Regional 

Resilience to a Changing Climate (ARRCC) programme within the Strengthening Climate 

Information Partnerships South Asia (SCIPSA) project. ARRCC SCIPSA has a regional focus, 

supporting the South Asian Seasonal Climate Outlook Forum (SASCOF) and recognising the 

important role of Regional Climate Centre (RCC) Pune. SCIPSA also provides national 

support in four focus countries, primarily Afghanistan, Bangladesh, Nepal and Pakistan. Thus, 

following the skill assessment of the South Asia region, an in-depth analysis is performed for 

South Asia with emphasis on each of these four ARRCC focal countries.  

The main objective of this study is to inform the model selection process for the 

seasonal forecast produced at SASCOF. This forum is held prior to each of the above two 

monsoon seasons (JJAS and OND), bringing together experts from various institutions, 

including Global Producing Centres (GPCs), RCC Pune and National Meteorological and 

Hydrological Services (NMHSs), to produce the regional consensus precipitation forecast for 

the respective seasons. The WMO have defined an initiative to make the process for 

producing the SASCOF forecast more objective and recommend that skilful dynamical 

prediction systems (also referred to as dynamical models) that are appropriately calibrated 

and combined should form a basis for the forecast. Such objective methods will enhance the 

robustness, reproducibility and traceability of the SASCOF forecast. 

Based on various verification metrics computed for the period 1993 to 2016, most of 

the models are shown to possess positive skill in predicting South Asian precipitation 

variability, noting considerable spatial differences. The verification metrics used include 

correlation coefficients, the Relative Operating Characteristic (ROC) scores and reliability 

diagrams. During the JJAS season, models exhibit moderate to good skill for large swathes of 

central and northern India and Nepal, with correlations of 0.4 to 0.8 and relative operating 

characteristic (ROC) scores of 0.6 to 1.0. Correlations are much lower (less than 0.4) for much 

of the northwest and northeast, for example in Bangladesh. In contrast for the OND season, 

models possess higher skill in the northwest and far southeast with correlations of 0.4 to 0.8, 

whereas correlation does not exceed 0.4 for other parts of the region. Improvements in model 

performance are most imperative for areas where skill is low, but precipitation totals and year-

to-year variability remain high, for example in Bangladesh during JJAS. 

For both seasons, models are typically more skilful in locations where precipitation 

variability has a strong relationship with the El Niño Southern Oscillation (ENSO) and 

the Indian Ocean Dipole (IOD) in the observations. In contrast, models typically have lower 

skill in areas where weaker relationships exist with ENSO and IOD, or there are very low 

precipitation amounts, for example in Afghanistan during the JJAS season. Furthermore, the 

models which simulate a stronger ENSO-precipitation relationship are typically more skilful. 

The range in skill between models highlights the importance of using a Multi-Model 

Ensemble as a basis for the SASCOF regional forecast, rather than any individual 

model. Whereas at the country-level, there are clearly models that exhibit substantially more 

skill over others, and careful consideration should therefore be made when selecting models 

for the seasonal forecast. Additional analysis on the skill of an MME and ways to combine 

these models at both the regional and national levels is recommended as further work. 



   
 

42 
© Crown copyright 2021, Met Office 

1. Introduction 

South Asia is the most densely populated geographical region in the world and highly 

vulnerable to variability in precipitation. Anomalous dry or wet years can lead to widespread 

adverse impacts on livelihoods and the economy, especially in the agriculture (Ray et al., 

2015; Aryal et al., 2020) and water (Srivastava et al., 2020) sectors. However, the intensity 

and distribution of precipitation possesses considerable spatiotemporal variability across the 

region. Seasonal forecasts, if skilful, can provide information on how the precipitation may 

deviate from normal several months ahead, and have the potential to support long-term 

planning decisions and provide advanced warning of adverse or potentially beneficial climatic 

conditions, such as droughts and floods (e.g. Golding et al., 2019; Daron et al., 2020). Climatic 

conditions in South Asia are predicted to become more extreme and unpredictable due to 

climate change, threatening food security and water availability (IPCC, 2014), and thus 

accurate seasonal forecasts will become even more imperative in the future.  

1.1 Climate of South Asia 

South Asia’s immense geographical scale and varied topography leads to starkly different 

regional climates, ranging from arid desert in the northwest, alpine tundra and glaciers in the 

north, to humid tropical regions in the southwest. The South Asian monsoon is the principle 

source of precipitation for most of the region. The fundamental driving mechanism of the  

monsoon circulation is the pressure gradients (ocean to land) established  by thermal  

contrasts  between  the  land  mass of Asia  and the large extent of ocean to its south. The 

resulting flow carries huge amounts of moisture from  the  oceanic region to the land, which 

drives widespread, and occasional torrential precipitation, as the humid and unstable air is 

forced to rise over the land. South Asia experiences two distinct monsoon seasons based on 

the direction of the rain-bearing winds: the southwest (or summer) monsoon during the JJAS 

period and the northeast (or winter) monsoon during the OND period. Precipitation associated 

with the southwest monsoon does not reach the far northwest of South Asia, for example 

Afghanistan, where it remains largely dry during the JJAS season, as shown in Figure 2. 

Precipitation here is predominantly driven by low pressure systems, known as western 

disturbances, which originate in the extratropical North Atlantic as well as the Mediterranean 

and then move eastwards across the northwest of South Asia from October to June.  

1.2 Predictability of seasonal precipitation in South Asia 

Weather forecasts have seen considerable improvements in recent decades, yet the chaotic 

nature of the atmosphere still prevents skilful day-to-day forecasts past lead times of two to 

three weeks (Buizza & Leutbecher, 2015). However, forecasts of the average conditions of a 



   
 

42 
© Crown copyright 2021, Met Office 

season are possible, and this is due to slowly evolving variations in lower-boundary forcing, 

for example changes in sea-surface temperatures (SSTs), soil moisture, sea ice and snow 

cover (Charney & Shukla, 1981). These slowly evolving variations can influence large scale 

atmospheric processes, and thus provide a source of predictability at long-range timescales. 

The atmosphere and ocean are most closely coupled in the tropics, and thus, prediction of 

precipitation on the seasonal timescales here is generally the most skilful (Kumar et al., 2013; 

Scaife et al., 2019). 

It has been well established that seasonal prediction of South Asian precipitation is strongly 

linked with tropical SST anomalies (Goddard et al., 2001; Kucharski & Abid, 2017), especially 

in the central and eastern tropical Pacific; a phenomenon known as the El Niño Southern 

Oscillation (ENSO). Through changes to the Walker circulation (Bjerknes, 1969), during the 

southwest monsoon, El Niño events (warm phase of ENSO) tend to suppress precipitation 

and La Niña events (cool phase of ENSO) tend to enhance it (Pant & Parthasarathy, 1981; 

Rasmusson & Carpenter, 1983; Ju & Slingo, 1995). More recently, irregular oscillations in 

SSTs in the Indian Ocean, where the western part becomes alternately warmer (positive 

phase) or colder (negative phase) than the eastern part, known as the Indian Ocean Dipole 

(IOD; Saji et al., 1999), have also been linked to monsoon precipitation variability (Behera et 

al., 1999; Kripalani & Kumar, 2004). The IOD and ENSO are closely interconnected; the IOD 

has been thought to enhance or modulate the influence of ENSO on South Asia precipitation 

(Ashok et al., 2001). Whilst ENSO and IOD are the main source of predictability for the region 

(Johnson et al., 2017), many other drivers of variability have been identified, for example, SST 

and atmospheric patterns in the North Atlantic ocean (Wang et al., 2018; Yadav et al., 2009), 

springtime snow depth in the Himalayas (Hahn et al., 1976) and aerosols (Ramanathan et al., 

2005). On shorter timescales, internal dynamics, mainly the eastward propagating Madden-

Julian Oscillation and the northward propagating intraseasonal oscillation, known as the 

Boreal Summer Intraseasonal Oscillation, also drive active (enhanced precipitation) and break 

(modulated precipitation) phases with a period of 30 to 90 days (Goswami & Xavier, 2003).  

For decades, seasonal forecasts for southwest monsoon precipitation have been produced 

using statistical methods (Walker, 1924; Gowariker et al., 1989; Rajeevan et al., 2004, 2007; 

van den Dool, 2006; Pai et al., 2017), but in recent years, advances in dynamical general 

circulation models (GCMs), have allowed them to become the predominant method for 

producing seasonal forecasts (for example, Pillai et al., 2018; Scaife et al., 2019). GCMs used 

for seasonal forecasts are commonly referred to as dynamical models or seasonal prediction 

systems. Methodologies which include a mixture of statistical and dynamical methods are also 

being increasingly utilised, as statistical postprocessing of the dynamical predictions is of 

interest to various users to give finer-scale information (Lang & Wang, 2010; Mohanty et al., 
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2019; D. P. Walker et al., 2019). Canonical Correlation Analysis is a commonly used method, 

and the main technique available from the International Research Institute’s Climate 

Predictability Tool (CPT)1, which is a regularly used software package to help produce 

consensus forecasts at Regional Climate Outlook Forums (RCOFs), for example in East Africa 

(Kipkogei et al., 2017; Colman et al., 2019) and West Africa (Colman et al., 2017). 

Numerous studies have assessed the ability of seasonal dynamical models to simulate and 

predict precipitation associated with the Asian monsoon on different timescales (for example, 

Ju & Slingo, 1995; Webster et al., 1998; Kim et al., 2012; Ramu et al., 2017; Pillai et al., 2018; 

Cash et al., 2019; Jain et al., 2019; Köhn‐Reich & Bürger, 2019; Mohanty et al., 2019). While 

improvements have been made in predicting the Asian monsoon large scale flow patterns, 

especially with the introduction of coupled atmosphere ocean models, providing skilful 

predictions of seasonal precipitation over South Asia remains a challenge and is an active 

area of research. Capturing the relationship between precipitation variability and the SST 

teleconnections, such as ENSO and IOD, are critical for improving the skill of GCMs (Pillai et 

al., 2018).  

For further reading, a comprehensive review of the climate of South Asia, the climate drivers 

and predictability of precipitation variability can be found in Stacey et al. (2019)2. 

1.3 National and Regional Seasonal Forecasts for South Asia 

Supported by the World Meteorological Organisation (WMO), many locations around the world 

hold a Regional Climate Outlook Forum3 (RCOF) to produce a consensus seasonal forecast 

for the upcoming season (Ogallo et al., 2008). In South Asia, this is known as the South Asian 

Seasonal Climate Outlook Forum (SASCOF). SASCOFs are held three times a year; once for 

each of the two monsoon seasons and one for the winter season (DJF). The forum is held in 

April for the JJAS forecast period (lead time of greater than 1 month), in September for the 

OND forecast period (lead time less than 1 month), and in November for the DJF season (lead 

time less than one month). The Indian Meteorological Department Pune (IMD Pune) are the 

WMO-designated Regional Climate Centre for the region and have been leading and co-

ordinating the preparation and issuing of seasonal consensus forecasts for South Asia since 

2010. The regional forecast is then refined by the National Meteorological and Hydrological 

Services (NMHS) in each country to produce a seasonal forecast specific to their country and 

 

1 https://iri.columbia.edu/our-expertise/climate/tools/cpt/ 
2 
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/business/international/scipsa
_review_seasonal_forecasting_south_asia_final.pdf 
3 https://public.wmo.int/en/our-mandate/climate/regional-climate-outlook-products 
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tailored to the requirements of different sector users, such as those in agriculture. An example 

of the forecast issued as part of the 2020 seasonal consensus outlook statement4 is provided 

in Figure 1. 

 

Figure 1. The regional consensus tercile 2020 JJAS precipitation forecast produced by IMD at the 
SASCOF in April 2020. Source: RCC, Pune SASCOF-17 statement. 

Following a global review of the RCOFs, the WMO defined an initiative to move towards a 

more objective-based forecasting process (WMO, 2020). Since there are multiple models 

available on which to base the seasonal forecast, the WMO first recommend selecting a set 

of candidate models based on their regional skill and performance. The selected models can 

then be combined to produce an average of the forecast inputs, known as a Multi-Model 

Ensemble (MME). Statistical evidence shows that multi-model ensembles are generally a 

better predictor of observed climate than any single model over a long period of time (see the 

SPECS (2016) review for more on this topic).  

For South Asia, there are limited studies that assess the skill and reliability of the seasonal 

forecast models used within the SASCOF process for the entire region. Furthermore, most 

skill assessments (e.g. Rajeevan et al., 2012; Jain et al., 2019) use the forecast with the most 

up to date initialisation month (i.e. May for the JJAS period), but to make it relatable to 

SASCOF we assess predictions for JJAS made in April. Holding the forum further in advance 

 

4 http://rcc.imdpune.gov.in/SASCOF17/final_SASCOF17_consensus_statement_JJAS_2020.pdf 
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of the season of interest allows more time for planning, and thus model skill assessment on 

this timescale is essential. 

1.4 Outline of study 

In this study, the skill and reliability of 12 dynamical seasonal prediction systems have been 

analysed in order to quantify each model’s ability to capture year-to-year precipitation 

variability in South Asia. The aim is for this assessment to inform the model selection process 

when producing the seasonal forecast at the SASCOF, supporting an objective forecast 

methodology in line with WMO recommendations. Therefore, in this report, our focus is on the 

regional seasonal forecast for precipitation during the JJAS and OND seasons consistent with 

the SASCOF forecasts. 

This research has been conducted as part of the UK-aid funded Asia Regional Resilience to 

a Changing Climate (ARRCC) programme under the Strengthening Climate Information 

Partnerships South Asia (SCIPSA) project. The purpose of the SCIPSA project is to bring 

together regional and national climate information providers, end-users and researchers to 

strengthen seasonal forecasting activities and advice services to vital sectors in the region. 

Whilst the ARRCC programme is regional in nature, it primarily focusses on supporting four 

focal countries: Afghanistan, Bangladesh, Nepal and Pakistan. Thus, this skill assessment 

covers the South Asia region, and a more in-depth skill analysis for each of the four ARRCC 

focal countries will follow.  

The structure of this report will be as follows: Section 2 introduces the observational and model 

data used for this study and outline the methods used in calculating the verification metrics. 

Section 3 presents and discusses the results of the skill assessment and also explore the 

influence of the two main drivers of South Asian precipitation: ENSO and IOD. Finally, section 

4, discusses and summarises the results, with suggestions for further work. 
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2. Data and Methods 

The data and methods used to assess the performance of the seasonal forecast models are 

described in this section. There are various methods for assessing the performance of a 

dynamical seasonal forecast model, and this study focuses on those recommended by the 

World Meteorological Organization (WMO, 2019). 

2.1 Observations  

Observations have been taken from the Climate Hazards Group InfraRed Precipitation with 

Station dataset (CHIRPS) (Funk et al., 2015). The CHIRPS dataset is based on precipitation 

estimates derived from high-resolution satellite imagery, blended with station rain-gauge data 

to create a near real-time gridded daily precipitation time series from 1981 to present, 

downloaded as monthly aggregates. The dataset covers the tropics and sub-tropics (50°S to 

50°N) for land points only and has been downloaded from the IRI Climate Data Library5  at a 

resolution of 1.0° x 1.0° to align with model resolutions (it is also available at 0.05° x 0.05°). 

CHIRPS v2.0 was chosen as it covers the region and time period of interest, and is commonly 

used in the SASCOF forecast production process.  

2.2 Seasonal prediction systems 

The observational data has been compared with corresponding forecasts from 12 seasonal 
dynamical coupled prediction systems; information on each of these systems can be found in Table 1. 
The prediction systems, which will also be referred to as models throughout this document, were chosen 
based on the availability of the data at the time of analysis and previous use in the region. All data has 
been downloaded from the IRI Climate Data Library5 at a resolution of 1.0° x 1.0°, and re-gridded to the 
CHIRPS dataset to ensure a consistent grid (original misaligned by 0.5°). A common hindcast period of 
1993 to 2016 has been taken between all models. Since the purpose of this assessment is to inform 
the SASCOF process (see section 1.4 Outline of study), the target period and initialisation months have 
been chosen to align with those used in SASCOF. For the southwest monsoon, hindcasts are for the 
forecast period JJAS and initialised in April (two-month lead time). For the northeast monsoon, 
hindcasts are for the forecast period OND and initialised in September (one-month lead time). 
An ensemble mean has been taken from all available ensembles from each model; note that, 
as shown in

 

5 http://iridl.ldeo.columbia.edu/ 
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Table 1, the number of ensemble members varies greatly between models. 
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Table 1. List of dynamical seasonal prediction systems included in the skill assessment and their configurations (as of Feb 2021) 

System 

name 

Centre / 

Country 

Atmosphere 

horizontal 

resolution (at 

equator)/vertic

al levels 

Ocean model 

name 

resolution 

/vertical 

levels 

Hindcast 

Ensemble 

size 

Hindcast 

Period 

Reference 

CanCM4i 

(cmci) 

Canadian 

Meteorolo

gical 

Center 

Grid point: 1.41° 

E-W; 0.94° N-S 

(155km)  

40 levels 

CanOM4  

1.41° E-W; 

0.94° N-S  

40 levels 

10 1981 - 2018 von Salzen et al. (2013) 

CMCC 

SPSv3 

Italy 1° x 1°, 110km, 

46 levels 

NEMO3.4, 

25km 

50 levels 

40 1993 - 2016 Sanna et al. (2017) 

COLA-

ccsm4 

NCAR Grid point: 0.9° 

E-W; 1.25° N-S  

(100km)  

26 levels 

POP2  

1°, 0.3 near 

equator  

60 levels 

10 1982 - 2020 https://www.cesm.ucar.edu/ 

models/ccsm4.0/ 

DWD 

GCFS2p0 

Offenbach

, Germany 

1° x 1° (70km at 

around 50°N), 

95 levels 

 

0.4°,  

40 levels 

30 1993 - 2016 Fröhlich et al. (2021) 
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GEM-

NEMO 

Canada Grid point: 1.4° 

E-W; 1.4° N-S 

(155km) 79 

levels 

NEMO v3.6 1°; 

0.33° near 

equator 50 

levels 

10 1981 - 2018 IRI data library documentation6 

GEOSS2S NASA 0.5° x 0.5°, 

40 levels 

MOM5, 0.5°, 

40 levels 

4 1981 - 2016 Vernieres et al. (2012) 

GFDL-A NOAA Cubed sphere: 

(50km E-W; 

50km N-S) 32 

levels 

MOM5 1°, 

0.33° near 

equator 50 

levels 

12 1980 - 2020 Kirtman et al. (2014) 

GFDL-B NOAA Cubed sphere: 

(50km E-W; 

50km N-S) 32 

levels 

MOM5 1°, 

0.33° near 

equator 50 

levels 

12 1980 - 2020 Kirtman et al. (2014) 

GloSea-5 Met Office, 

UK 

Grid point: 0.83° 

E-W; 0.56° N-S 

(90km) 85 levels 

NEMO v3.4 

0.25°, 75 levels 

28 1993 - 2017 Maclachlan et al. (2015) 

Meteo-

France 7 

Meteo-

France, 

France 

~50km, 91 

levels 

NEMO v3.6, 

ORCA 1° grid, 

75 levels 

25 1993 - 2016 https://www.wmolc.org/ 

contents2/index/Toulouse 

 

6 https://iridl.ldeo.columbia.edu/documentation/Models/NMME/CanSIPSv2/technote_cansips-v2_20190703_e.pdf 
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NCEP 

CFS2 

NOAA, 

USA 

~100km,  

64 levels 

GFDL MOM3, 

1/3° x 1° in 

tropics, 

40 levels 

24 1982 - 2020 Saha et al. (2014) 

SEAS-5 ECMWF ~36km, 

91 levels 

NEMO v3.4 

ORCA 0.25° 

grid, 

75 levels 

25 1981 - 2016 Johnson et al (2019) 
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2.3 Pearson’s correlation 

To display the spatial variations of deterministic skill (e.g. Figure 4), the Pearson’s correlation 

coefficient, as shown in Equation 1: Pearson's correlation coefficient., is calculated at each 

grid-point by comparing the total seasonal precipitation between the model hindcast ensemble 

mean x and observations y at each time step i. All references to ‘correlation’ and/or ‘r’ 

throughout this document use the Pearson’s method. 

Equation 1: Pearson's correlation coefficient.  

𝑟 =  
∑(𝑥𝑖 −  �̅�)(𝑦𝑖 −  �̅�)

√∑(𝑥𝑖 −  �̅�)2(𝑦𝑖 −  �̅�)2
 

Stippling (i.e. dots) on maps highlights areas of statistical significance at the 95% two-tailed 

confidence interval. The correlations shown in the bar plots (e.g. Figure 6) for the whole region 

and each of the ARRCC focal countries have been calculated between the spatial mean 

precipitation from each of the models and the spatial mean precipitation from the observations. 

Pearson’s correlation has been chosen for its common usage and simplicity. For robustness, 

these have been compared to correlation maps using Kendall’s tau (not shown), which relies 

on ranking and is less susceptible to extremes as it weights each year equally. The sets of 

results are spatially similar and therefore Pearson’s correlation is deemed acceptable for this 

purpose.  

2.4 ROC maps and diagrams 

A commonly used verification metric to assess the skill of probabilistic seasonal forecasts is 

known as the relative operating characteristic (ROC) (Marzban, 2004; Mason, 1982). ROC 

scores quantify the skill in terms of whether a specific forecast “event” occurs. In this study, 

events are classified as precipitation totals falling into one of three tercile categories: above, 

near and below normal. The event is considered to be forecast if the forecast probability for 

that event exceeds a specific threshold. The corresponding observation is then checked to 

determine which of the following four categories the forecast falls into, as shown in Table 2. 

Table 2: ROC score categories 

 Event is observed Event is not observed 

Event is forecast Hit False Alarm 

Event is not forecast Miss Correct Negative 



   
 

16 
© Crown copyright 2021, Met Office 

 

Equation 2: Hit rate and false alarm rate used to produce a ROC curve 

𝐻𝑖𝑡 𝑅𝑎𝑡𝑒 =  
𝑇𝑜𝑡𝑎𝑙 ℎ𝑖𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 (ℎ𝑖𝑡𝑠 𝑝𝑙𝑢𝑠 𝑚𝑖𝑠𝑠𝑒𝑠)
 

𝐹𝑎𝑙𝑠𝑒 𝐴𝑙𝑎𝑟𝑚 𝑅𝑎𝑡𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑜𝑛 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 (𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 + 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 

ROC diagrams display the “hit rate” against the “false alarm rate”, using the definitions of 

Equation 2. For each tercile category, these two rates are plotted against one another for each 

forecast probability threshold forming a ROC curve. A skilful forecast will have a ROC curve 

which bows towards the top-left of the plot as it maximizes the hit rate and minimizes the false 

alarm rate, whereas for a forecast with no skill, the curve will follow the diagonal line as the hit 

and false alarm rates would be equal. The overall ROC skill score can be calculated by 

quantifying the area under this curve, with a score of 1 for a perfect forecast and 0.5 for a 

forecast with no skill (no better than climatology i.e. always predicting a probability of 33% for 

each tercile category). ROC maps show the ROC score calculated at each grid-point for each 

of the three terciles. ROC skill maps have been generated for the South Asia region (e.g. 

Figure 5) as well as ROC curves for South Asia (e.g. Figure A3) and each of the ARRCC focal 

countries (e.g. Figure A4-8). 

2.5 Reliability diagrams 

Reliability diagrams (Hamill, 1997; Hartmann et al., 2002) are an important tool for deciding 

whether forecast probabilities for an event are a true reflection of the chance of the event 

occurring. Reliability diagrams (e.g. Figure A4-A8) match up the forecast probabilities for each 

tercile category, with the observed frequency of each tercile category given the forecast 

probability. A reliable forecast would give similar values for both forecast probability and 

observed frequency, and thus the points would be close to the diagonal (y=x). For example, 

say we collected the cases in our hindcast period where the seasonal forecast probability of 

above-normal precipitation was 40%, then we would count, for these cases, how many times 

out of those cases the precipitation actually fell into the above-normal tercile; if this was 40% 

of the time, the forecast would possess “perfect reliability”. Reliability diagrams reveal 

systematic biases in forecast probabilities and may be used to correct such biases. For 

example, if a model forecasts the probability of a wetter than normal season to be 70%, but 

according to the reliability diagram it is usually only observed 60% of the time with this forecast 

probability, then we can instead issue a forecast probability of 60%. 
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Reliability diagrams can possess substantial noise due to small samples, especially when the 

verification period or spatial domain is not large. To reduce sampling issues, probability bins 

of 0.2 have been used in this study. Sharpness diagrams (see section 2.6 Sharpness 

diagrams) should be used alongside reliability diagrams to check that there are enough 

forecasts in each bin.  

2.6 Sharpness diagrams 

The histograms located beneath the reliability diagrams show, for each event, the total number 

of hindcasts within each probability bin over the reference period and at all grid-points, and 

unlike ROC and reliability diagrams, observations are not considered. Known as “sharpness” 

or “frequency” diagrams, these histograms have two purposes. First, they ensure there is 

sufficient data in all bins when assessing the forecast reliability to allow statistically significant 

interpretation. Second, they provide information on forecast “sharpness”, that is, when the 

hindcasts populate a range of probability bins, including bins away from the climatological 

norm (i.e. 33% for all terciles). A set of forecasts with low sharpness will rarely deviate from 

climatology – the frequency histogram will peak at the climate frequency with few hindcasts in 

higher or lower probability bins. In contrast, the greater the tendency for higher populations of 

the low and high probability bins, the greater the sharpness of the forecasts. Note that a 

forecast system based on random selection of event probabilities will be sharp. For forecasts 

to be skilful, they must possess sharpness and reliability, with the reliability curve lying within 

a margin of the diagonal (Graham et al., 2005). 

Further information on ROC curves, reliability diagrams and other skill scores or metrics used 

in this study can be found in Wilks (2011). 

2.7 Domain choice 

This analysis covers the South Asia region, defined as 5-40°N 60-110°E. Due to the lack of 

observational data, the Maldives has not been included in this study.   

As mentioned in section 1.4 Outline of study, more in-depth analyses have been provided for 

the ARRCC project focal countries using the following domains (a visual outline of each 

domain can be found in Figure A1): 

• Afghanistan: 28.5-39.5°N, 60-76°E 

• Bangladesh: 20-28.5°N, 84.5-95°E 

• Nepal: 25-32°N, 79-90°E 

• Pakistan: 

▪ North: 32-39°N, 68-79.5°E 

▪ South: 23-32°N, 60-74°E 
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In consultation with the country NMHSs, rectangular boxes surrounding the countries have 

been defined, rather than taking the area inside the borders only, for the following reasons. 

First, the climate is not bounded by country borders; it is important to assess the skill of models 

in capturing the large-scale climate features which affect the aforementioned countries by 

using larger domain boxes. Second, there are places where the precipitation falling in 

surrounding areas is also of interest, for example over mountains (of which there are ample in 

the South Asian region) where precipitation runs into the rivers flowing into the countries of 

interest; this is important for Bangladesh in particular. Also note that Pakistan has been divided 

into north and south domains due to its diverse climatology.  

2.8 Teleconnection indices 

In section 3.3 Drivers of South Asian precipitation variability, the relationship between South 

Asia precipitation and the most well-known climate drivers, ENSO and IOD, are investigated 

using the two different SST anomaly indices in Table 3. The Pearson’s correlation has been 

used to calculate the simultaneous correlation between each of these indices and observed 

and model precipitation. Each of the indices has been averaged for the concurrent period as 

used for the precipitation, and hence, no time lag has been used in this study.  

Table 3. List of teleconnection indices used in this study 

Index Region   Definition Data 

source 

ONI 5°N-5°S, 120°-170°W The Oceanic Niño Index (ONI) is NOAA’s 

primary indicator for monitoring ENSO 

over the Niño 3.4 region. A positive 

(negative) index over 5-months typically 

signifies an El Niño (La Niña) event. 

NOAA 

Climate 

Prediction 

Center7 

DMI Difference between 

50°E–70°E,  

10°S–10°N and 

90°E–110°E,  

10°S-equator 

The Indian Ocean Dipole Mode Index 

(IODMI) captures SST anomalies between 

the west and southeast of the tropical 

Indian Ocean.  

NOAA 

Physical 

Science 

Laboratory8 

 

 

7 https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php 
8 https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/dmi.had.long.data 
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3. Results 

3.1 Skill of models in predicting precipitation from June to September 

In this section, we analyse various metrics to assess the skill and reliability of seasonal 

precipitation forecasts for the 12 seasonal prediction systems, first focused on the southwest 

monsoon season from June to September (JJAS). This is the wettest season for most of the 

region, with many areas receiving over 80%  of their annual rainfall (Figure 2 and Figure 3). 

However, the far northwest, namely Afghanistan, remains predominantly dry during this 

season. Care should be taken when analysing areas with low precipitation amounts, as 

precipitation totals can often be more difficult for observations to capture, i.e. showers or more 

sporadic precipitation can be more easily missed by a rain gauge than an area of widespread 

dynamic precipitation. This observational uncertainty can potentially make skill results less 

reliable. Note that other factors can also contribute to observational uncertainty, for example 

if there are less gauges covering an area. 

 

Figure 2. Mean precipitation across South Asia in mm/day for the JJAS season from 1993 to 2016 
according to the CHIRPS observation dataset 
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Figure 3. Percentage contribution of total annual precipitation during the JJAS season. Source: MMS 
and RIMES (2017). Data source: APHRODITE (0.25 x 0.25) data set (Yatagai et al., 2012) 

 

3.1.1 Results for the South Asia Region in JJAS 

The spatial plots of correlation and ROC scores for the South Asia region and JJAS season 

(Figure 4 and Figure 5) display considerable spatial variation between models, although there 

are some similarities. Compared to typical seasonal forecast performance, precipitation is well 

captured by almost all models for large swathes of India, especially in central and northern 

areas, and for much of Nepal, especially in the west, with correlations of 0.4 to 0.8 and 

significant  at 5% level as well as ROC scores of 0.6 to 1.0 in places. Skill is lower in the far 

south of India and Sri Lanka, with correlation below 0.4 in most models, except for CFS where 

correlations exceed 0.4. The northwest of the region sees some areas of correlation exceeding 

0.4 and significant, particularly in central Pakistan and north Afghanistan. In northwest India 

and northeast Pakistan, nearly all models exhibit an area of low correlation of below 0.4, and 

even negative and significant in some models. Correlation is variable in the east of the region 

over Bangladesh, Bhutan and northeast India, with weak correlation (below 0.4) and low ROC 

scores (below 0.6). Although in parts of Myanmar, mainly in the south, some models have 

pockets of moderate correlation (0.4 to 0.6).  

Note that the ROC scores for the middle tercile can be found in appendix A2, and exhibit 

consistently lower scores than the other terciles for both seasons. This can be explained 

because in an above or below normal year, there are likely to be physical climate drivers (e.g. 

El Niño) giving a signal for conditions to be different from normal, whereas in the absence of 

climate forcing unpredictable internal variability is likely to dominate. 
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Figure 4. Pearson's correlation between precipitation in CHIRPS observations and the 12 different 
seasonal prediction systems listed for the JJAS season from 1993 to 2016. Stippling marks statistical 
significance at the 95% confidence level.
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Figure 5: Maps showing the area under the ROC curve for the below-normal tercile (left) and above-normal tercile (right) for each model for JJAS 
precipitation. Values greater than 0.5 indicate a skilful forecast. 
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Variation in correlation is also high between models. Based on the analysis here, no single 

model is the most or least skilful everywhere; they all appear to have strengths and 

weaknesses in different areas. Figure 4 (top left panel) shows the correlations between the 

spatially averaged precipitation in observations and each of models over the entire South Asia 

region. CMCC, GEM-NEMO and ECMWF-S5 are the top three performers, whereas 

MeteoFrance-7 performs least well. However, the performance of models varies greatly 

depending on location shown by the country-specific bar plots Figure 6. 

 

Figure 6. The 12 seasonal prediction systems ranked by Pearson's correlation between the spatially 
averaged precipitation in CHIRPS observations and each of the models for the South Asia region and 
country specific domains for the JJAS season from 1993 to 2016. Note, only correlations of above 0.4 
(to the right of the orange dashed line) are significantly different from zero.  
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3.1.2 Results for the country-specific domains in JJAS 

The ROC curves and reliability diagrams for the ARRCC focal countries, Afghanistan, 

Bangladesh, Nepal and Pakistan, indicate large variability between domains and models 

(Figures A4-A8). In general, the upper and lower terciles show greater skill and reliability than 

the middle tercile, corroborating the spatial ROC results in Figure 5 and A2. It’s worth noting 

the small number of high probability forecasts in some of the models as shown by the 

frequency diagrams, and hence reliability results for these high probability forecasts should 

be regarded with caution. In the reliability diagrams, the forecasts are generally overconfident 

for all domains and models, shown by the lines with gradients less than the diagonal. This 

indicates that in subsets of years where the event has a high chance of occurring (i.e. it has a 

high frequency of occurrence) the forecast probability even higher, and in subsets where the 

event has a low probability of occurring (low observed frequency) the forecast probability is 

even lower. The following sections discuss the results for each of the ARRCC focal countries 

in turn.  

Afghanistan 

Unlike the majority of South Asia, JJAS is the dry season in Afghanistan. Unaffected by 

monsoon precipitation, prolonged droughts are common during this season (Qutbudin et al., 

2019). Most models exhibit fairly low ROC skill (Figure A4) during JJAS, which may partly be 

explained by a lack of precipitation, and thus observational uncertainty in this season (Figure 

2). CMCC and COLA-CCSM4 models exhibit the highest ROC skill, shown to be mainly in the 

northeast of Afghanistan by the spatial maps (Figure 4 and Figure 5). Furthermore, DWD-

GCFS2 and ECMWF-S5 show positive skill for the below-normal tercile, supported by the 

spatial ROC maps which highlight areas of ROC scores exceeding 0.8 in parts of the north 

and west of the country by these models. Reliability is low for all models. 

Bangladesh 

Bangladesh receives more than 75% of its rainfall during the JJAS season, mainly driven by 

weak tropical depressions that originate in the Bay of Bengal (Shahid, 2010). Rainfall 

distribution varies considerably, with the lowest amounts in central-western parts and highest 

in eastern parts (Figure 2). Floods are a common occurrence in Bangladesh and result from 

excess rainfall falling both inside and outside the country (Ahasan et al., 2011).  

Almost all models for the Bangladesh domain exhibit low ROC scores and reliability (Figure 

A5), and some no better than climatology (e.g. GEM-NEMO). According to the ROC and 

reliability plots, ECMWF-S5 has the greatest skill and reliability, with the ROC area under 

curve almost 0.6, followed by GloSea-5. However, the correlation of the spatially averaged 

precipitation (Figure 6) suggests GFDL-A and DWD are the best performing models, although 
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still not significant. The lack of skill in Bangladesh, also confirmed by the spatial skill maps and 

bar plots, highlights a need for improved understanding, regional observational datasets, and 

model development in this region. Potential reasons for the poor skill will be discussed in 

section 3.3 Drivers of South Asian precipitation variability.  

Nepal 

The summer monsoon is the predominant feature driving precipitation in Nepal, which receives 

approximately 80% of its precipitation in association during the JJAS season, with July and 

August being the wettest months. The central and eastern regions of Nepal receive more 

precipitation than the west (Figure 2), due to blocking and steering of flow and moisture by the 

steep Himalayan orography. Although there is large variation in spatial distribution from year 

to year (Shrestha, 2000). 

Most of the models demonstrate high positive ROC skill over the Nepal domain, with ROC 

scores exceeding 0.6 for many models, in particular CanCM4I, ECMWF-S5 and GloSea-5 

(Figure A6). Reliability is also good for some models, especially GloSea-5 for the below and 

above tercile categories. However, some models have much lower skill, including 

CFS2_NCEP and MeteoFrance-7. The spatial skill suggest the highest skill appears to be in 

western parts of Nepal (Figure 5).  

Pakistan  

Pakistan has a mostly arid climate, although it does remain humid in a small area in the north. 

The monsoon season occurs from July to September, when most rainfall falls in north and 

northeastern parts of the country, although the distribution of precipitation greatly varies from 

year to year (Chaudhry & Rasul, 2004). Extreme rainfall events in this northern area can cause 

severe flooding and loss of life during this season. For example, when an unusually strong 

monsoon depression travels all the way from the Bay of Bengal westwards to Pakistan.  

The majority of models for Pakistan exhibit generally low skill (ROC scores less than 0.6) but 

poor reliability (Figures A7-A8). In the north domain, where the majority of Pakistan’s 

precipitation falls in association with the southwest monsoon, ROC skill is generally low, but 

with some models showing good reliability, such as CMCC. In the south domain, some models 

possess positive ROC scores of above 0.6, namely CMCC, COLA-CCSM4 and ECMWF-S5, 

although reliability is largely poor. The spatial maps indicate that the areas of higher skill are 

mainly around the centre of the country. 
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3.2 Skill of models in predicting precipitation from October to December 

In this section, we analyse various metrics measuring the skill and reliability of seasonal 

precipitation variability for the 12 seasonal prediction systems, considering the northeast 

monsoon season from October to December (OND). This is a much drier season for most of 

South Asia as the monsoon flows from the northeast, predominantly affecting the far south 

and southeast (Figure 7). Even though the amount of precipitation falling over Afghanistan 

and parts of Pakistan appears minimal in Figure 7, OND is an important season here as 

precipitation makes up 10-30% of their annual precipitation (Figure 8).  

 

Figure 7. Mean precipitation across South Asia in mm/day for the OND season from 1993 to 2016 
according to the CHIRPS observation dataset 
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Figure 8. Percentage contribution of total annual precipitation during the OND season. Source: MMS 
and RIMES (2017). Data source: APHRODITE (0.25 x 0.25) data set (Yatagai et al., 2012) 

3.2.1 Results for the South Asia Region in OND 

As with the results for JJAS, there is considerable spatial variability across the region for the 

OND season, as shown in the spatial skill maps in Figure 9 and Figure 10. The areas of 

negative and weak correlation mostly correspond with the areas that receive very little 

precipitation during this season, such as in central and northern India, and Nepal. In the south 

and southeast of the region, where the highest rainfall occurs, the majority of models possess 

higher skill, with correlations exceeding 0.4. Almost all models show positive and significant 

correlation for parts of the northwest, particularly in Afghanistan and northern Pakistan, where 

ROC scores exceed 0.7 in places; although note that precipitation is still relatively low here 

and thus observational uncertainty should be taken into account. Models show contrasting 

results for the northeast of the region. For example, Bangladesh ranges from positive and 

significant correlation exceeding 0.4 in CFS2 and ECMWF-S5, to negative and significant 

correlation below -0.4 in CanCM4. Similarly, results in Bhutan, northeast India and Myanmar 

are mixed. The area in the far northwest of India which exhibited poor skill for the JJAS season 

has generally positive and, in a few models such as ECMWF-S5, significant skill for the OND 

period.  
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Figure 9. Pearson's correlation between precipitation in the CHIRPS observations and the 12 different 
seasonal prediction systems listed for the OND season from 1993 to 2016. Stippling marks statistical 
significance at the 95% confidence level. 
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Figure 10: Maps showing the area under the ROC curve for the below-normal tercile (left) and above-normal tercile (right) for each model for OND 
precipitation. Values greater than 0.5 indicate a skilful forecast. 
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Similar to the JJAS season, there is considerable disparity between models, with no single 

model that performs well everywhere, but each exhibiting positive and negative correlations 

in different locations. By spatially averaging precipitation over the region, Figure 11 (top-left) 

shows the models with the highest average correlation over the region are MeteoFrance-7, 

COLA-CCSM4 and GFDL-A, whereas DWD and CanCM4I perform least well. Note how the 

high correlations for MeteoFrance-7 appear to be mostly driven by the very high correlations 

in Afghanistan and northern Pakistan, as elsewhere the skill pattern is similar to other models, 

highlighting the importance of assessing the average values alongside spatial maps (i.e. 

Figure 9). As with the JJAS season, these results demonstrate how models have varying 

strengths and weaknesses for the different country-specific domains. 

  

Figure 11. The 12 seasonal prediction systems ranked by Pearson's correlation between the spatially 
averaged precipitation in CHIRPS observations and the models for the South Asia region and country 
specific domains and the OND season from 1993 to 2016. Note, only correlations of above 0.4 (to the 
right of the orange dashed line) are significantly different from zero. 
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3.2.2 Results for the country-specific domains in OND 

As seen in all other analyses, the ROC curves and reliability diagrams for the ARRCC focal 

countries (Afghanistan, Bangladesh, Nepal and Pakistan) indicate large variability between 

domains and models (Figures A11-A15). As expected, the upper and lower terciles generally 

show greater skill and reliability than the middle tercile. Again, only the section of the reliability 

diagram with a sufficient number of forecasts will be considered. As with the JJAS results, the 

forecasts generally appear overconfident, indicated by the lines with gradients less than the 

diagonal in the reliability diagrams. The following sections discuss more on the results for each 

country, referring to the ROC and reliability diagrams in Appendix 9, as well as the spatial skill 

maps showing Pearson’s correlation (Figure 9) and the ROC skill (Figure 10).  

Afghanistan 

Western disturbances drive spells of precipitation across Afghanistan during the OND season, 

although most of these occur from December to March. 

Almost all models show positive ROC skill and moderate reliability over Afghanistan (Figure 

A11), with the CMCC, GloSea-5 and MeteoFrance-7 models performing particularly well, with 

some ROC scores around 0.7. The NASA and COLA models perform less well according to 

these metrics. The bar plots show that about half of the models have average correlation 

exceeding 0.4, with MeteoFrance-7 performing particularly well (Figure 11). The spatial ROC 

maps illustrate how most of the models exhibit ROC scores of above 0.6 across large swathes 

of the country, in particular the north and west. 

Bangladesh 

From October to November, Bangladesh receives around 15% of its annual rainfall as the 

monsoon rains retreat (Rafiuddin et al., 2009). 

As with the JJAS season, ROC and reliability plots for Bangladesh indicate a lack of skill in 

the region for the OND season (Figure A12). CFS shows the most skill and reliability, and the 

spatial skill maps suggest significant positive correlations of above 0.4 in the south and 

southeast of the country. The bar plots also show that CFS has significant correlation 

exceeding 0.5 over this domain. 

Nepal 

The northeast monsoon is marked by occasional short spells of precipitation in October, 

otherwise Nepal stays predominantly dry during the OND period. Although, occasional 

western disturbances can bring spells of precipitation to western Nepal from December (Sigdel 

& Ikeda, 2013). 
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As displayed in the correlation maps, the skill for Nepal over the OND season is much lower 

than for JJAS (Figure A13), although precipitation amounts are also much lower during this 

season. ROC skill scores are generally low (around 0.5), and reliability is also limited. GFDL-

A and CFS2 (the upper tercile) exhibit positive skill, but this is weak and non-significant, which 

is supported by the bar plots in Figure 11. The spatial maps also signify low but positive skill 

uniformly distributed across Nepal. 

Pakistan 

Winter precipitation in Pakistan is mainly associated with western disturbances. Most of the 

precipitation falls from December to March, hence the mean precipitation in the OND season 

(Figure 7) is still fairly low. The majority of precipitation (including a large amount of snowfall) 

affects the north of Pakistan (Salma et al., 2012).  

For the OND season, the models possess higher skill for the north domain compared to the 

south (Figure A14 and A15); noting that the opposite is the case for the JJAS season. The 

spatial maps corroborate these findings, with the highest skill in the north of the region for 

most models, corresponding with slightly higher precipitation totals. The models with the 

highest skill and reliability are CMCC, CFS2 and MeteoFrance-7 in the north and CMCC, 

GloSea-5 and MeteoFrance-7 (lower tercile) in the south. The bar plots also clearly 

demonstrate the higher skill in the north of the country than the south, with MeteoFrance-7 

being particularly skilful in the north domain with a spatially-averaged correlation of 0.6 (Figure 

11). 

3.3 Drivers of South Asian precipitation variability 

The WMO recommend that when selecting models for the SASCOF seasonal forecast, the 

selection process should also be based on their ability to simulate climate drivers that have 

an influence on the area of interest and relevant season (WMO, 2020). Therefore, in this 

section we will explore the link between precipitation and the two main climate drivers in the 

region: ENSO and IOD, for the seasons and regions of interest. As noted in section 1.2 

Predictability of seasonal precipitation in South Asia, there are other important drivers of South 

Asian precipitation, but only links with ENSO and IOD are covered in this section. 

3.3.1 The observed ENSO-precipitation relationship 

The observed ENSO-precipitation relationship is investigated by calculating the Pearson’s 

correlation coefficient between observed precipitation from 1993 to 2016 for the JJAS and 

OND seasons and the observed ONI index (see details in Table 3).  
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For the JJAS season, Figure 12 indicates the correlation between the ONI index and observed 

precipitation is negative for much of South Asia, particularly in Nepal and central and southern 

India. The largely negative correlation confirms the increased likelihood of anomalously dry 

(wet) conditions during the warm (cool) phase of ENSO (corresponding with positive (negative) 

values on the ONI index). The spatial pattern of correlation has similarities to the spatial skill 

plots for precipitation (Figure 4 and Figure 5). This is not surprising; a stronger ENSO 

teleconnection increases potential predictability, and models that can capture the 

teleconnection will tend to have better skill in the teleconnected area. In contrast, areas where 

the correlation is much weaker, for example in Bangladesh and northwest of the region, 

correspond with areas of lower skill in the spatial precipitation skill plots. 

 

Figure 12. Map of Pearson's correlation between the ONI index and precipitation observations, both for 
the JJAS period (no time lag) from 1993 to 2016. 

For the OND season, the relationship between the ONI index and observed precipitation is 

mixed (Figure 13), but as seen in JJAS, the areas which indicate a stronger ENSO 

teleconnection are generally the areas where models have better skill. A negative and, in 

places, significant correlation is present over the east of the region including Bangladesh, 

indicating a warm (cool) phase of ENSO is associated with less (more) precipitation. The 

opposite is true for Sri Lanka and the far northwest of the region, in particular Afghanistan and 

northern Pakistan, where much of the correlation is significant and positive. Elsewhere, a 

weaker ENSO teleconnection indicated by lower correlation values corresponds with areas of 

lower skill, including across large swathes of India and Nepal. The stronger (weaker) 

correlation values also appear to correspond with areas of higher (lower) mean precipitation 

(Figure 7). 
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Figure 13. Map of Pearson's correlation between the ONI index and precipitation observations, both for 
the OND period (no time lag) from 1993 to 2016. 

 

3.3.2 Model performance and their relationship with ENSO 

Results from section 3.3.1 The observed ENSO-precipitation relationship suggest that the ONI 

index and precipitation correlation have a similar spatial pattern to the skill maps for the various 

models. In this section, we will explore the following question: do the models that have a 

stronger ENSO-precipitation relationship also have higher skill? To explore this question, 

model skill is plotted against the ENSO-precipitation relationship by comparing the correlation 

between the spatially averaged model and observed precipitation (x-axis) and correlation 

between the ONI index and spatially averaged model precipitation (y-axis). The Pearson’s 

correlation coefficient (r) and p-value (p) between the two correlations have also been 

calculated. Uncertainty in these correlation statistics is large because of  the small sample size 

therefore  care should be taken not to infer anything too definitive from these r and p values. 

Furthermore, it is important to remember that the models will pick up on a number of other 

teleconnections other than ENSO and thus the relationship between model skill and either of 

these two drivers should not be overstated when analysing these plots. 

When JJAS precipitation is averaged over the entire South Asia region, according to the 

results in Figure 14 (top-left panel), there is a negative correlation between the ENSO 

teleconnection and model skill. The negative slope signifies that when a model has a more 

negative correlation between ONI and precipitation, it tends to have higher skill. Interestingly, 

the observation line suggests that in the “real world” (albeit limited by the precision of the 

CHIRPS observations dataset), the ENSO-precipitation relationship is much weaker than 
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many of the skilful models suggest. The spatial plots of correlation between precipitation and 

ONI index for each of the models (Figure A16) also appear to exaggerate the negative 

correlation across a large swathe of South Asia, when compared to the correlation with 

observed precipitation (Figure 12). Therefore, even though the models appear oversensitive 

to the influence of ENSO, this oversensitivity also appears to improve their skill in forecasting 

precipitation. This is likely because the if the variability is driven by ENSO, then models that 

capture the ENSO response are likely to be more skilful than those that do not, even if they 

overestimate it. The correlation diagnostic may also amplify this effect. Note that, ENSO 

occurs in a minority of years, and thus much of the correlation score may come from just a 

few years in the series. 

For the country-specific domains, the ENSO teleconnection appears to have less influence on 

model skill, with the exception being the Nepal domain (see Figure 14; middle-right panel), 

which has a negative correlation. The observation line also signifies a high correlation between 

observed precipitation and the ONI index, which is much closer to that of the most skilful 

model. Thus, these results, as well as those from the correlation between the observations in 

Figure 12, suggest that precipitation variability in Nepal is influenced by ENSO. The other 

domains for the ARRCC focal countries have much lower skill and a weaker link with ENSO. 

For the Afghanistan and Pakistan North domains, the slope of the line of best fit is positive 

(opposite to all other domains), albeit with weak correlation between the points. The 

observation line is near zero for both of these domains, suggesting ENSO has a weak 

influence in this area, and from our previous analyses shows that both precipitation amounts 

and skill are low here, especially in Afghanistan. However, interestingly the top performing 

model is CFS2 in both of these domains, and is the only model which has a highly positive 

ENSO-precipitation correlation. For Bangladesh and the southern Pakistan domains there is 

no significant relationship between model skill and the ENSO-precipitation relationship, which 

is likely due to the fact that the ENSO teleconnection has less influence here and thus there 

is less predictability for models to exploit. 
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Figure 14. Scatterplot of correlation between the observed ONI index and model precipitation (y-axis) 
against correlation between observed and model precipitation (x-axis) for the JJAS season from 1993 
to 2016. The correlation coefficient (r) and p-value (p) are stated in the box at the top-right of each plot; 
note that p<0.05 represents significance at 95% confidence level. The dashed grey line marked 
“observations” represents the correlation between the ONI index and observed precipitation. 
Precipitation is spatially averaged over South Asia and each of the country-specific domains in the plot 
titles. The black line represents the line of best fit between the 12 points.  
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The same plots for the OND period show contrasting results from those for JJAS, with no clear 

correlation present for the South Asia region (Figure 15; top-left panel). However, the spatial 

map of correlation between observed precipitation and the ONI index (Figure 13) suggests 

there is a significant relationship in places, with areas of negative and positive correlation. 

When spatially averaging the entire area, where neither positive or negative correlation 

dominates (unlike in JJAS where most of the area is dominated by a negative correlation) is 

likely to be the reason that the correlation between ONI and precipitation appears deceptively 

low (Figure 14; top-left panel).  

The country-specific domains reveal there is a potential relationship between ENSO and 

precipitation for Afghanistan and Pakistan North domains. Most of the models appear to pick 

up on this relationship and have good positive skill, with the best performing models generally 

having a slightly stronger ENSO-precipitation relationship than the others. The results for the 

Pakistan South domain imply a positive relationship between model performance and the 

ENSO teleconnection. However, note that some models suggest a negative ENSO-

precipitation correlation whilst the models with most skill suggest a positive correlation; closer 

to the observations line, which is weakly positive. For the Bangladesh domain, the ENSO 

teleconnection looks to have more of an influence in the OND season, compared to JJAS 

when no obvious ENSO relationship is apparent. The negative correlation implies that the 

models that have a stronger ENSO teleconnection have higher skill; somewhat surprising 

given the model results for the ROC and reliability plots (aside from the CFS2 model) in 

Figures A12-i and A12-ii are fairly poor. Negligible ENSO influence is detected by the results 

for the Nepal domain during OND, although this season experiences very little precipitation.  
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Figure 15. As caption for Figure 14, but for the OND season. 

 

3.3.3 The IOD-precipitation relationship in observations and models 

The relationship between the observed IOD-precipitation relationship is investigated by 

calculating the Pearson’s correlation coefficient between observed precipitation from 1993 to 

2016 for the JJAS and OND seasons and the observed IODMI index (see details Table 3) and 

shown in Figure 16.  
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Figure 16. Map of Pearson's correlation between the IODMI index and CHIRPS observations, both for 
the JJAS period (left) and OND period (right) (no time lag) from 1993 to 2016. 

There is a much weaker relationship between observed South Asian precipitation variability 

and the IOD compared with ENSO for the JJAS season, indicated by the low correlations of 

less than 0.4 or above -0.4 for much of the area (Figure 16; left). Studies suggest that, in 

general, positive (negative) IOD events correlate with increased (decreased) southwest 

monsoon precipitation totals over the monsoon trough region (Ashok et al., 2001, Behera et 

al., 1999), which on average runs from the north of the Bay of Bengal to west Rajasthan and 

adjoining Pakistan.  This coincides with an area of positive and significant correlation in part 

of east India. For OND, there appears to be a more significant relationship; although 

interestingly, the pattern is remarkably similar to the ENSO plot in Figure 13 during this same 

season. The similar pattern suggests that a positive (negative) IOD event has a similar effect 

on South Asian precipitation to a El Niño (La Niña) event and/or that ENSO and IOD can co-

occur (Cherchi & Navarra, 2013).  

Scatterplots comparing the IOD and model precipitation relationship with model skill can be 

found for the JJAS and OND season in Figures A17-i and A17-ii respectively. For the JJAS 

season, as seen in the plots showing the observed precipitation-IOD relationship, the model 

precipitation-IOD relationship is generally weak and does not appear to be linked to model 

skill. Whereas for the OND season, the results look remarkably similar to those for the 

ENSO relationship during IOD in Figure 15, and therefore will not be discussed. 
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4. Summary and Recommendations for Further Work 

4.1 Discussion and summary of results for South Asia 

In this study, the ability of 12 dynamical prediction systems to capture precipitation variability 

in South Asia has been assessed for both the southwest (JJAS) and northeast (OND) 

monsoon seasons, with further analysis into how spatial variability in model skill varies with 

spatial variability in the strength of teleconnection with ENSO and IOD. 

Most models have skill in predicting precipitation variability in South Asia, although there is 

considerable spatial variability. For instance, in the JJAS season, most models exhibit 

moderate to good skill for large swathes of central and northern India and Nepal, with 

correlations of 0.4 to 0.8 and ROC scores of 0.6 to 1.0, which may be explained by a strong 

ENSO teleconnection in these areas. Whereas in places where the connection with ENSO is 

less clear, such as Bangladesh and northwest India, most models exhibit much lower skill 

(correlations below 0.4). Moreover, many of the models exhibit relatively lower skill 

(correlations below 0.4) over parts of the monsoon trough region. The location of the trough 

line varies throughout the JJAS season, but on average, it follows a line from the north of the 

Bay of Bengal to west Rajasthan and adjoining Pakistan. This area is strongly influenced by 

intraseasonal variations caused by the north-south swing of the trough about its normal 

location and low-pressure systems moving along the trough axis. Models on the seasonal 

timescale are not always able to simulate the intraseasonal variability associated with the 

monsoon trough, hence the lower skill here. In contrast, most models for the OND season 

demonstrate moderate positive skill (correlations of 0.4 to 0.8) for Afghanistan and northern 

Pakistan, as well as the far southeast. As with the JJAS season, this corresponds with areas 

demonstrating stronger ENSO and IOD teleconnections. Skill in the northeast of the region is 

rather mixed, even though there appears to be a strong correlation with ENSO in places. Areas 

of lower skill (correlations less than 0.4) mainly correspond with areas of minimal precipitation 

during this season, such as Nepal and central India. Reliability is particularly poor for the 

majority of domains assessed over both seasons. However, reliability can be improved 

through calibration, and this is regularly done in SASCOF through the use of CPT. 

There is considerable variation between models depending on the domain chosen and for 

different seasons. For example, the South Asia region bar plots of models ranked by Pearson’s 

correlation (Figure 11) suggest MeteoFrance-7 has the lowest correlations for JJAS and 

highest for OND, signifying the stark differences in model skill from one period to another. In 

regard to developing the regional forecast for SASCOF, this clearly supports the WMO’s case 

for using an MME (as explained in section 1.3 National and Regional Seasonal Forecasts for 

South Asia), and this analysis does not suggest that any of these 12 models should be 
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completely dismissed. However, at the country-level there are clearly models that exhibit 

substantially more skill over others. Careful consideration should therefore be made when 

selecting models for the seasonal forecast at the national level and the models that possess 

negative skill for the region and season of interest should be disregarded.  

Most of the models show skill in capturing precipitation where an ENSO teleconnection is 

identified by the observations (Figure 12 and Figure 13). Furthermore, the models that 

simulate the strongest ENSO-precipitation relationship typically exhibit more skill; a finding 

that has been reported by other studies (e.g. Jain et al. (2019)). The IOD teleconnection is 

less pronounced than that for ENSO in the JJAS season. Interestingly in the OND season, the 

influence of the IOD on precipitation shows a very similar pattern to the influence of ENSO. 

The majority of IOD events tend to be associated with El Niño events and many studies have 

discussed the independence of the IOD from ENSO (e.g. Allan et al., 2001; Ashok et al., 2001). 

Thus, perhaps the similar correlation patterns are not hugely surprising during OND when both 

SST anomalies are particularly prevalent. 

4.2 Discussion and summary of country-specific results 

The strength of the ENSO and IOD teleconnections partly explain the differing results for each 

of the ARRCC focal countries. Next, we will summarise our findings and potential drivers for 

each of the countries in turn. 

Afghanistan 

In Afghanistan, models exhibit fairly poor skill for the JJAS season; an inconsequential result 

as this is a commonly dry season. Whereas for OND, spells of precipitation occur with the 

passage of western disturbances. Models perform better for this season, with both ENSO and 

IOD having a moderate to high positive correlation (0.4 to 0.8) with precipitation. Moreover, 

Afghanistan receives the majority of their precipitation from December to March, and therefore 

similar analysis focussing on subsequent months would be beneficial. 

Bangladesh 

Models perform particularly poorly for Bangladesh during JJAS, and unfortunately this is a 

season of substantial rainfall amounts and variability. For all models, correlations fail to exceed 

0.4 and ROC scores and reliability are also low. Neither ENSO or IOD have a strong 

correlation with precipitation over Bangladesh in this season, which likely explains the poor 

model skill. Another potential reason could be the large intraseasonal rainfall variability, driven 

by the boreal summer intraseasonal oscillation (Fujinami et al., 2011), which is the dominant 

mode of rainfall variability during JJAS. Seasonal prediction systems are limited in their ability 
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to capture such short-range oscillations a season in advance (Lee et al., 2015). Although the 

OND season is a drier season than for JJAS as the monsoon withdraws, our findings indicate 

that some models exhibit moderate skill, with correlations exceeding 0.4 in the southeast of 

Bangladesh. The higher skill could be explained by an apparent stronger ENSO and IOD 

association with precipitation during OND than JJAS.  

Nepal 

The majority of models perform well over Nepal for the JJAS period, particularly in the west. 

Given the highly varied topography and climate of the region, the good skill is somewhat 

surprising, but ENSO appears to be a strong driver of Nepal’s precipitation. The IOD appears 

to have less of an influence according to the relationship between the observed IODMI index 

and precipitation (Figure 16). Studies (e.g. Bohlinger & Sorteberg (2018) and Sharma et al. 

(2020)) agree there exists a strong negative correlation between ENSO and Nepal rainfall, 

which can be linked to the strengthening of the monsoonal trough over Nepal. Sharma et al. 

(2020) also find a strong significant negative relationship with the Indian Ocean from the 

preceding spring to concurrent summer. The models demonstrate much poorer skill during 

OND, although this is a predominantly dry season for Nepal and both ENSO and IOD are only 

very weakly correlated with OND precipitation. 

Pakistan 

In general, the seasonal prediction systems for Pakistan exhibit low skill for the JJAS season. 

However, the spatial plots suggest some areas of better skill in places, particularly around 

central areas, with correlations of 0.4 to 0.6 in places. Correlation with ENSO appears weak 

during this period, although an area of significant and positive correlation exists between the 

IOD and precipitation over the south of Pakistan (Figure 16). The scatterplots do not show any 

relationship between this teleconnection and model skill, thus suggesting that the models are 

not picking up on this potential teleconnection. A recent study by Syed et al. (2019) assessed 

statistical predictors of summer monsoon precipitation. They found potential significant 

teleconnections, including SST anomalies in the tropical Atlantic, the equatorial southeast 

Indian Ocean in northern Pakistan and the North Asia sea level pressure tendency in southern 

Pakistan. A statistical model based on these predictors was shown to exhibit good predictive 

skill for the primary monsoon region of Pakistan. The results for the OND season reveal more 

optimistic results, particularly in the north domain, with many of the models possessing 

correlations of 0.4 to 0.6 in the north. ENSO and IOD appear to be influential teleconnections 

here during OND.  
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4.3 Future recommendations for further study 

Skill assessments, such as this one, take a snapshot in the performance of different seasonal 

prediction systems, providing information to inform the forecast produced in the SASCOF. 

Expanding this analysis in the following ways would also be beneficial:  

1. Additional variables: The models’ ability to capture other climate variables, such as 

temperature, would also be of interest for many sector users, for example those in the 

agriculture and health sectors, especially since there has been interest in including 

temperature in the SASCOF regional seasonal forecast. Another variable of great 

interest is monsoon onset timing. The ability of models to predict the exact date of the 

onset is still limited to 2-3 weeks in advance (Pradhan et al., 2017),  although some 

models have been shown to make skilful onset predictions based on tercile categories, 

for example, early, late or normal (Chevuturi et al., 2019, 2021).  Onset forecasts have 

also been produced by hybrid statistical/dynamical models using the Climate 

Predictability Tool (CPT) as part of the Greater Horn of Africa RCOF (GHACOF). 

2. Additional models: Other seasonal prediction systems not used here should be 

included in future skill assessments, particularly those commonly included in the 

SASCOF forecast production such as the Japan Meteorological Agency seasonal 

system. 

3. Additional seasons: Some parts of South Asia, namely Afghanistan and Pakistan, 

receive more precipitation in association with western disturbances from December to 

March. Therefore, this analysis could be extended to subsequent seasons for these 

areas.  

4. Skill of multi-model ensemble combinations: Additional analysis on the skill of a multi-

model ensemble at both regional and national levels, with experiments into different 

model combinations and how these compare with the skill scores of single skilful 

models, could be useful in informing the model selection process in the production of 

the national and regional seasonal forecasts. 

5. Skill of the SASCOF regional forecast: A useful exercise would be to compare the skill 

of the dynamical models with the regional forecasts developed in SASCOF, as 

performed in West Africa by Pirret et al (2019) and in East Africa by Walker et al. 

(2019). Since the SASCOF forecast began being produced in 2010, there is an 

insufficient number of forecasts available for a robust skill assessment. Another barrier 

is that the SASCOF forecast consists of the dominant tercile category at each grid 

point and does not include information on the other two tercile categories. Reliable 

future verification of the skill of the SASCOF forecast would require the forecast 

probability of all three tercile categories. Including all tercile categories in future 
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SASCOF forecasts could also provide additional and potentially useful information for 

various users of the forecast. 

6. Additional observation datasets with inclusion of Maldives: Examining observation 

uncertainty through the analysis of additional observations datasets would be valuable 

for assessing the trustworthiness of the skill results, particularly for regions with low 

precipitation amounts. Moreover, CHIRPS does not cover the Maldives, and thus, 

unfortunately, this study has not included this region. Therefore, future skill 

assessments should look to utilise station or precipitation datasets with ocean 

coverage which include the Maldives.   

7. Country-specific guidance: The findings from this report could be tailored to produce 

country-specific guidance notes on the assessed skill of seasonal prediction systems 

to guide seasonal forecast production at the national-level. 

4.4 Final conclusions 

South Asia is particularly vulnerable to variability in seasonal precipitation amounts. Skilful 

seasonal forecasts can allow additional time to support long-term strategic planning, inform 

policymakers, and ultimately mitigate against the devastating impacts of floods and drought 

and capitalise on potential benefits from likely climatic conditions. However, throughout this 

study, it has been clear that further work is required to improve the skill of dynamical seasonal 

prediction systems in capturing South Asian precipitation variability. Gaps in model skill exist 

for differing locations and seasons, in particular over Bangladesh during their peak rainfall 

season (JJAS). The ability for models to accurately simulate the large-scale climate drivers 

and their complex relationship with South Asian precipitation will be a continued challenge for 

many years to come.  

Fortunately, there are methods to enhance the skill of dynamical models as well as additional 

information that can support the production of regional and national seasonal forecasts, which 

can be particularly valuable in locations with poor model skill. First, statistical models, such as 

those developed in Pakistan by Syed et al. (2019), can provide additional information to 

support dynamical model output, especially where there are known predictors which have 

been shown to have a clear relationship with precipitation. Although, as with dynamical 

models, statistical methods have their limitations and solely relying on a statistical model 

should be done so with caution. Second, hybrid methods can be used to make use of the best 

characteristics of dynamical and statistical methods and can often enhance the skill and 

reliability of dynamical model output, for example through the use of CPT, as referenced in 

section 1.2 Predictability of seasonal precipitation in South Asia.  
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Furthermore, there is a need for further and continued assessments to monitor the changes 

in performance of seasonal prediction systems in the region. With continued research, more 

widespread and reliable observations, and model developments from improved resolutions, 

parameterisations, and data assimilation techniques, forecast skill will continue to improve into 

the future. Whilst improving our understanding of model skill is vital, future work should also 

focus on producing forecasts which are user-relevant in order to increase their uptake and 

accessibility. By working closely with sector users to improve understanding on how forecasts 

are interpreted and applied in practice, seasonal forecasts can be co-developed to have the 

greatest societal impact for the South Asia region. 
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