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1. Introduction: Aims and Scope 

This report is a literature review on the topic of seasonal-decadal prediction of Sahel 

rainfall. It emphasizes the basis, challenges and potential for product development 

based on the emerging new capacity of decadal prediction. The focus is the boreal 

summer rainy season in the Sahel, which typically accounts for about 80% of annual 

rainfall in the region. 

The review begins (section 2) with an overview of the now well-established seasonal 

prediction for Sahel rainfall with a relatively short (few months) lead time. The new 

“decadal prediction” science is summarized in general in section 3. Existing literature 

has often presented this new science in terms of a new capacity to (i) extend the lead 

time of existing seasonal predictions, such that they become true one-year-ahead 

predictions (reviewed for Sahel rainfall in section 4); (ii) provide some information 

about the time-mean conditions over multiple years into the future (reviewed for 

Sahel rainfall in section 5). Section 6 reviews the literature for status and challenges 

in the operationalization of the new decadal prediction capacity. Finally, section 7 

provides a brief overview from the literature on some science topics relevant to the 

application of Sahel decadal predictions, including recent trends in the Sahel (section 

7.1), spatial resolution of forecasts (7.2), some specific climate issues in the 

easternmost part of the target region extending into Ethiopia / Eritrea, where in some 

parts, rainfall is not so confined to bof real summer (7.3), the potential for information 

on early/late seasons rains (7.4), and literature on the question of targeted drought 

prediction versus rainfall prediction (7.5). 

The report draws on three existing reviews which may be consulted in parallel with 

this report, covering the existing seasonal forecast for the Sahel (Colman et al. 

2017), the interface of climate science with product development in Africa (Conway 

2012) and an overview of the drivers of Sahel rainfall, with specific reference to the 

seasonal and decadal prediction question (Steptoe and Rowell, 2018). 
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2. Existing Sahel Seasonal Forecast Capacity 

(lead time of a few months) 

During the 1980s and 1990s, a capability was operationalized to make skillful 

seasonal climate forecasts for many regions including boreal summer rainfall in the 

Sahel. The primary source of predictability for these seasonal forecasts in the Sahel 

is the influence exerted by large scale sea surface temperatures (SSTs) on the 

boreal summer West African monsoon and associated rainfall (e.g., Lamb 1978; 

Folland et al. 1986, subsequent contributions including Rowell et al. 1995; Giannini et 

al. 2003; Rodriguez-Fonseca et al. 2015). Many parts of the global ocean play a role, 

including Atlantic, Pacific, Indian and Mediterranean (reviewed in Steptoe and Rowell 

2018). The relation of Sahel rainfall variations with SST variations tracks both year-

to-year changes in Sahel rainfall, as well as the longer-term (multi-year to a few 

decades) swings in Sahel rainfall. Existing seasonal forecasts can therefore track the 

historical longer-term variations, but the predictions are only operational with a lead 

time of a few months, since the operational models were only applied for typically up 

to 6-months ahead. For such a lead time, persistence of ocean conditions, or 

evolution in the near-surface component of the ocean, is sufficient to permit skillful 

predictions. Beyond about 6 months, the problem is more clearly linked to evolution 

of the ocean-atmosphere system, and requires models to be able to represent such 

evolutions (as is now being addressed for decadal prediction, see section 3).   

Initially, the seasonal forecasts for Sahel rainfall were made by both dynamical 

methods as well as statistical methods, where aspects of the prevailing SST patterns 

were statistically related to the seasonal rainfall totals. This is reviewed in Colman et 

al. (2017), where it is noted that it is now largely considered that dynamical methods 

have over time improved to a point where they are considered more reliable than 

statistical methods. Dynamical methods use General Circulation Models (GCMs) of 

the climate system. One approach to make a forecast is to take the atmospheric part 

of the GCM, and drive it with the expected SST pattern for the coming few months 

(either assuming persistence of SST anomalies, or through explicit off-line SST 

prediction). Increasingly, and now predominantly, GCMs are run as fully coupled 

ocean-land-atmosphere models. So, to use spring climate conditions to forecast for 

Sahel rainfall in the summer, the following procedure may be followed: the GCM is 

initialized with prevailing climate conditions in say April, and run forward in time for 

the next 6 months, to generate climate conditions for the coming May-October 
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period. Such models can be run for past years, to explore the level of skill to expect 

when the system is applied operationally. Forecasts generated for past years in this 

way are often referred to as “hindcasts”.  The illustrative set of hindcasts given in 

Colman et al. (2017) is reproduced here in Fig. 1a. The hindcasts correlated with the 

observed rainfall total with a correlation of 0.696, which is around the upper-level of 

skill that has been typically achieved for seasonal Sahel rainfall. 

An important aspect to note in Fig. 1a, is that for a given year, multiple forecasts are 

presented. This is because the GCM, when starting from slightly different initial 

conditions, may follow a different pathway through the coming 6 months. The GCM is 

therefore run several times, attempting to sample the range of plausible outcomes 

from the existing prevailing conditions. The set of forecasts is termed the “ensemble”, 

and the best estimate forecast is considered as the mean of the ensemble. Hence, 

the correlation skill (Fig. 1a) refers to the correlation between the ensemble mean 

forecast and the observed. This concept inherently communicates the way in which 

seasonal forecasts are probabilistic in nature.  

Existing seasonal forecast products may attempt to estimate the probability of 

different outcomes. A commonly used procedure is to work in terms of three rainfall 

categories, where over the historical period, the category boundaries are chosen 

such that each of the three categories (dry, near-normal, wet) are equally likely to 

occur. The forecast then estimates the probability of each category occurring in the 

target forecast period. This may be undertaken by direct application of the range of 

outcomes in the forecast ensemble, or through statistical calibration.  

The optimum forecast has been shown to be achieved through the combination of 

the predictions of multiple prediction systems. This may be done subjectively by 

forecast experts (e.g., Fig. 1b) or through objective combination and calibration (e.g., 

Fig. 1c, see Barnston et al. 2010). Note, in Fig. 1a, the boundaries for 5 equally likely 

categories are given: this five-category quintile system is often used to express 

seasonal forecast probabilities in UK Met Office seasonal forecasts (e.g., Folland et 

al. 1991). Indeed, the target information may be tailored to any given application, and 

probabilities estimated for the target outcome (such as a specific definition of 

drought). These concepts have been quite widely explored now in the context of 

seasonal prediction (e.g., Hansen et al. 2006), and represent needed work to 

establish best practices for the new decadal prediction science. 
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3. The New “Decadal Prediction” Science 

In the last 10-15 years, a major initiative has been to develop and evaluate 

predictions from GCMs for multiple years ahead (Meehl et al. 2009; Smith et al. 

2013; Meehl et al. 2014). Sets of hindcasts have been run for typically at least 5-

years-ahead and in some cases, up to 10-years-ahead. Evaluation approaches have 

often focused on skill of the hindcasts for 1-year-ahead, and skill of the mean of 

years 2-5 (example in Fig. 2a). Many of the experiments have been carried out in a 

coordinated way through the 5th phase of the Climate Model Intercomparison Project 

(CMIP5, Taylor et al. 2012) and the ongoing 6th phase (CMIP6, Boer et al. 2016). The 

hindcasts are initialized with observations of the current climate state (most important 

being the status of the ocean in coupled ocean-atmosphere variations), in addition to 

specifying changes in radiative forcing due to greenhouse gases, aerosols (both 

volcanic and anthropogenic), and solar variability. As with the short-lead seasonal 

forecasts, ensembles of an individual model are generated and averaged, and 

combinations of multiple models are made, although the magnitude of benefits and 

optimal choices of increasing ensemble size and model combination are still being 

explored for decadal predictions (e.g., Sienz et al. 2016). 

The importance of running such hindcasts to assess potential skill is emphasized by 

Boer et al. (2016): “A forecast is essentially useless unless there is some indication 

of its expected skill. A sequence of retrospective forecasts (known as “hindcasts”) 

made with a single model, or preferably multiple models, can provide historical skill 

measures as well as estimates of predictability”. A caveat is provided in Smith et al. 

(2013): “We also note that hindcasts do not necessarily provide an accurate estimate 

of forecast skill. For example, hindcasts may underestimate the skill of current 

forecasts, which benefit from greatly improved observations of the sub-surface ocean 

provided by the Argo array, but may overestimate forecast skill due to unintentional 

use of observations that would not have been available in a real forecast situation.”. 

Nonetheless, the hindcast procedures, conducted in the coordinated framework of 

CMIP5 and CMIP6, are considered valuable sources of knowledge on the expected 

skill of decadal predictions. 

Most evaluation did, in the early stages, focus on near-surface temperature (as in the 

examples in Fig. 2a), since temperature is considered easier to predict than 

precipitation (as found in the existing seasonal forecasts). A caveat is that much of 

the skill in temperature is achieved through tracking general warming that has 
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occurred over the hindcast set of years, with limited skill being attributable to the 

capture of coupled ocean-atmosphere natural fluctuations (e.g., Goddard et al. 

2013). The North Atlantic is however, a window of opportunity in this respect, since it 

is known to exhibit particularly strong natural decadal variations (e.g., Meehl et al. 

2009, Sutton et al. 2018), often measured in terms of the Atlantic Multidecadal 

Oscillation (AMO), an index for which is the SST averaged across much of the North 

Atlantic, though in recent decades, the AMO index may also be influenced by 

atmospheric aerosols. Skill for this index in the decadal predictions has been found to 

be high (e.g., Fig. 2b). This is especially relevant in terms of the potential to predict 

Sahel rainfall, since the AMO has been associated with decadal aspects of Sahel 

rainfall variation (e.g., Knight et al. 2006). Indeed, some promise for Sahel rainfall 

decadal prediction already emerged in early CMIP5 work evaluating precipitation in 

decadal predictions from multiple models (Fig. 2c) (e.g., Doblas-Reyas et al. 2013, 

Martin and Thorncroft 2014). This potential has now been studied in detail by Sheen 

et al. (2017), as highlighted in the subsequent two sections of this review.  

 

4. Potential New Product 1: extended-lead 

seasonal forecasts (i.e. 1-year-ahead 

predictions) 

Sheen et al. (2017) analyzed a set of hindcasts from the Met Office Decadal Climate 

Prediction system (termed DePreSys3). The hindcasts span the period from 1960 to 

2014. Hindcasts have not been made for every year (or set of years), but there are 

sufficient to provide a good representative sample across the period 1960 to 1994 

(see Figs. 3 and 4). For 1-year-ahead hindcasts, ten ensemble members were run, 

and the predicted values in Fig. 3 (and Fig. 4) are the ensemble average. It may be 

noted that the verification used GPCC gridded monthly precipitation (Schneider et al. 

2014) estimated at 1-degree spatial resolution using the available stations in each 

year. While this dataset is respected as providing reliable best estimates of rainfall, it 

is limited by data availability, such that some uncertainty on the actual observed 

values in Fig. 3 and Fig. 4 needs to factored into interpretation. On average, this 

means the skill estimates may be considered conservative estimates (especially at 

the small grid-box scale), actually less skill than that which would be calculated with 

perfect observations. 
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For rainfall averaged across the Sahel, the correlation skill is r=0.48 (see Fig. 3). This 

level of skill is somewhat lower than the short-lead seasonal forecasts (e.g., Fig. 1a), 

but nonetheless, is at a level with clear potential to give an early approximate 

indication of the upcoming Sahel rainfall season, with a lead time of 8 months. This 

represents a substantial advance and it is clear in Fig. 3 that the hindcasts are 

accurately predicting some of the major interannual Sahel rainfall variations, such as 

the switch from dry conditions in 1997 to wet conditions in 1998. Sheen et al. (2017) 

diagnose how this ability to predict year-to-year variations is linked to the model’s 

ability to simulate variations in large-scale atmospheric stability across the Sahel, 

driven by SST variations that are successfully forecast as part of the model’s coupled 

ocean-atmosphere evolution (further details also in Steptoe and Rowell, 2018).   

The spatial pattern of skill (Fig. 3, left panel) suggests predictions are more accurate 

in the western part of the Sahel as compared to the eastern part. For the west and 

east Sahel boxes shown on Fig. 3 (left panel), the skill of area-averaged rainfall for 

west Sahel is r=0.50, and for east Sahel is r=0.33 (still estimated as statistically 

significant, even if less overall variance is successfully predicted). 

 

5. Potential New Product 2: multi-year mean 

forecasts (e.g. years 2-5 ahead) 

A further, and probably  even more significant, advance in the Sheen et al. (2017) 

paper is the demonstrated ability of the DePreSys3 model to successfully forecast 

the 4-year mean Sahel rainfall with a lead time of over 1 year. For example, a model 

forecast initialized in November 1960 successfully forecasts the mean rainfall for 

1962-1965 (as seen in the first time point of Fig. 4, right panel). These forecasts are 

termed “years 2-5”, and it is clear from Fig. 4 that they successfully capture the 

relatively wet Sahel period in the 1960s, the very dry period of the 1970s and 1980s, 

and the subsequent moderately wetter average conditions. 

Sheen et al. (2017) explain the ability to make such multi-year forecasts primarily 

through moisture convergence changes: a warmer North Atlantic (as in the positive 

phase of the AMO) and warmer Mediterranean lead to enhanced moisture 

convergence and precipitation in the Sahel. The possible reasons for the ability of the 

model to correctly predict the relatively warmer sea-surface conditions in the North 
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Atlantic / Mediterranean in the 1960s and in the more recent epoch are discussed in 

Steptoe and Rowell (2018).  

Skill for the “years 2-5” forecasts is quite uniformly strong across the complete Sahel 

(Fig. 4, left panel). When rainfall is averaged for the west and east Sahel separately, 

skill drops only slightly for the east Sahel (r=0.63) compared to the west Sahel 

(r=0.75). Since observations may be less reliable in the east Sahel, this is not 

considered strong evidence of spatial variation in skill, rather, the results suggest 

good skill across both west and east Sahel. 

It is interesting to reflect that the “years 2-5” forecast has a skill for the whole Sahel 

(r=0.73) comparable to the skill of the existing short-lead seasonal forecasts (see the 

example in Fig. 1a). This is possible because the years 2-5 forecast is for the mean 

of 4 years. Making the mean can average out unpredictable year-to-year variations, 

so that the longer-lead 4-year mean forecast can in principle be equally or even more 

skillful than the short lead 1-year forecast. The value of the forecast though will 

depend on the user requirement. If the user is interested in exactly how the 4-year 

period will unfold (or drought risk in any individual year), then this product will need to 

be adapted and skill will be less when assessing information for each year 

individually within the 4-year mean. However, it is emphasized that if users are 

interested in the individual year risks through the 4-year period, a relatively small 

amount of statistical analysis of the hindcast results would enable this to be 

estimated. For example, the risk of a drought in one of the years in a 4-year period, 

or the risk of back-to-back droughts in two of the four years etc. 

 

6. Status and Challenges towards 

operationalization of the new “Decadal 

Prediction” 

Decadal prediction is an emerging capability, with ongoing exploratory experiments 

within the framework of CMIP6 (Boer et al 2016), as well ongoing production of what 

are termed “quasi-operational” forecasts, to date being undertaken primarily as a 

learning process (Smith et al. 2013). From 2010 to 2016, UK Met Office coordinated 

the exchange of quasi-real-time predictions from multiple GCMs 

https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-

https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/decadal-multimodel
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range/decadal-multimodel (though users were advised to not base decisions on the 

experimental information at this stage) and UK Met Office has issued experimental 

information based on its own GCM system, most recently for 2018 initialized in late 

2017 https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-

range/decadal-fc. In September 2018, the Met Office announced that it is now the 

WMO Lead Centre for Annual-to-Decadal Climate Prediction responsible for 

collecting and providing hindcasts, forecasts and verification data from contributing 

centres worldwide (http://bit.ly/2MUGJAA). Presentation of forecasts reflects the early 

stage of a new product being primarily created for the science community to learn 

through the process, with forecasts presented simply as full anomaly fields 

(temperature only for UKMO released information, precipitation as well for the above-

referenced multi-model exchange, and multiple variables for the new WMO Lead 

Centre initiative). 

Some steps toward a more user-oriented operational product for a target regional like 

the Sahel are already in place, while other aspects appear less mature at this stage. 

Some observations, based on the literature and experience with the 

operationalization of the existing seasonal forecast are given below. They primarily 

address issues around the multi-year (years 2-5) product; the 1-year-ahead product 

is essentially a simple lead time extension of the existing seasonal forecast, though 

in the context of decadal prediction experiments, issues around initialization and 

ensemble generation are still applicable, to the extent that these are different from 

the existing seasonal forecast products.  

(i) Hindcast Skill Assessments: The work of Sheen et al. (2017) is very strong in 

establishing that a decadal prediction GCM system, with given ensemble size, has 

the ability to perform successfully through the three substantive recent phases of 

Sahel rainfall. This provides strong evidence that this system can provide substantial 

skill, in terms of both years 2-5 and 1-year-ahead information. 

(ii) Diagnose skill in the hindcasts: It increases confidence greatly if the source of skill 

is diagnosed (i.e. understood in terms of physical mechanisms). This has been done 

in Sheen et al. (2017), attributing skill to mechanisms of SST influence on the rainfall. 

A caveat concerns uncertainty in the literature over the relative roles of different 

mechanisms (returned to in section 7.1). 

(iii) Real-time forecast diagnosis and evaluation: Capacity is needed to diagnose a 

real-time forecast, and subsequently to evaluate it, in terms of climate system 

https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/decadal-multimodel
https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/decadal-fc
https://www.metoffice.gov.uk/research/climate/seasonal-to-decadal/long-range/decadal-fc
http://bit.ly/2MUGJAA


 

Supported by: Fund Manager:  

  

    

 

mechanisms as well as overall accuracy. This can be considered an important 

component when transitioning from quasi-operational product status. 

(iv) Multi-model considerations  

Introduction: The benefits (greater skill and confidence) of a multi-model approach 

have been firmly established for existing seasonal forecasts. In principle, the same 

concepts apply to decadal prediction, though in this experimental phase, there 

appears less literature to quantify the benefits. Nonetheless results are often 

presented as individual model ensemble mean skill, and multi-model ensemble mean 

skill, as seen in the AMO evaluation (Fig. 2b). Furthermore, it is well-known that 

some GCMs fail in their ability to represent Sahel rainfall variability (Colman et al. 

2017). The consequence is that a simple multi-model average can be rendered 

substantially less accurate by inclusion of GCMs that are clearly failing.  

One-year-ahead: Sheen et al. (2017) provide comparable results for other GCMs 

(their supplementary Table 1, reproduced here as Table 1), showing skill at 1-year-

ahead and for years 2-5. The 1-year-ahead DePreSys3 skill is clearly above that of 

other models (r=0.45, compared to at best r=0.33, 0.32 for CanCM4 and GFDL). The 

multi-model mean (referred to as CMIP5 in Table 1) is lower still (r=0.28). Even 

filtering just to the significant models (CanCM4 and GFDL), it seems unlikely that a 

multi-model ensemble would add substantial skill at this stage.   

Years 2-5: At years 2-5, Table 1 shows that MIROC5 and CanCM4 have comparable 

skill to DePreSys3, and other models also have statistically significant skill, 

suggesting potential to explore combining these skillful models (even though 

combining all models, CMIP5, results in a reduced skill, r=0.54). However, no 

literature has been found evaluating the mechanisms operating in the other models. 

At this early stage of decadal prediction, such evaluation would greatly increase 

confidence of adding these models into an exploratory Sahel product. Furthermore, 

Colman et al. (2017) also note that use of model wind fields may help in constructing 

multi-model information for Sahel rainfall.  

Summary: The comparable skill levels shown by Sheen et al. (2017) for years 2-5 in 

some other GCMs are encouraging and do reinforce confidence in the DePreSys3 

results.  Extending to a multi-model product appears to, at this stage, still require 

further work. 

 

(v) Initialization and ensemble generation. It will be important to assess that these are 

done in real-time in a way to support the expectation that the real-time forecasts will 

perform at skill levels roughly comparable to the hindcasts (under the assumption 
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that the true climate system predictability that Sheen et al extracted 1960-2014 does 

itself remains constant). 

(vi) Detrending: All results in Sheen et al. (2017) are detrended from the early 1960s-

to-present (due to  model systematic drift, an issue in many decadal GCM prediction 

systems). Presumably there are ways to operationalize the detrending for application 

to a real-time forecast (this is noted in Sheen et al. though the preferred solution not 

discussed). One aspect to note: if hindcasts were only available 1980s to present, 

the detrending may potentially remove the real decadal fluctuation from 1980s to 

present, thus further emphasizing the value of a set of hindcasts that sample through 

the three phases of Sahel rainfall since 1960.  

(vii) Baseline comparison with statistical approaches. When implementing GCM 

prediction systems, it is valuable to have a bench-mark statistical system for skill 

comparison. A commonly used basic system is persistence, and Sheen et al. (2017) 

show the improvements relative to persistence for DePreSys3 and some other 

CMIP5 models (Table 1). While more sophisticated statistical methods are in 

principle plausible, the observation of Colman et al. (2017) suggests GCMs have 

advanced to the point where they are preferable for existing seasonal forecasts, 

whereas implementation of statistical decadal prediction systems require great care 

due to small number of degrees of freedom in the historical data record (further 

discussion in Steptoe and Rowell, 2018). 

(viii) Format for an experimental forecast. The literature steers toward the two new 

timescales of product (1-year-ahead and 2-5 year mean), however, exactly how to 

present the information is not found in the literature. Currently, experimental products 

are simply served as global anomaly fields directly output from the GCM (e.g., for 

surface temperature and precipitation). An experimental product for users may follow 

the seasonal forecast experience of presenting the 2-5 year mean Sahel rainfall 

forecast in terms of tercile categories. In addition, if some information is needed on 

the likely nature of constituent years within the 4-year period, this may be done 

through consultation of the ensemble of model outputs and/or through quantifying the 

meaning of a 2-5 year below normal tercile in terms of the mean frequency of dry 

years with that 4-year period. Extraction of probabilistic information is a further area 

for work, this may be derived through ensemble spread (Goddard et al. 2014; Lott et 

al. 2014; Corti et al. 2012), or adjustment based on hindcast skill (as in seasonal 

forecast experience, e.g., Barnston et al. 2010). Some guidance in this regard may 
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be possible by constructing forecast/observed contingency tables from sets of 

hindcasts such as in Figs. 3 and 4. 

 

7. Other climate science issues underpinning 

the best application of the new forecast 

information 

 7.1 Role / nature of recent trends (including spatial variation) 

It is widely asserted that knowledge on recent climate trends forms a valuable part of 

actionable climate information and product development (e.g., review in Conway 

2011). This can be expected to be especially true in the application of decadal 

prediction for the Sahel.  

Underpinning Sheen et al. (2017) is the implication that the change in rainfall from 

the 1960s (wet) to 1970s and 80s (dry) to the subsequent relatively wetter conditions 

is primarily attributable to changes in SST patterns, which they diagnose as causing 

changes in moisture convergence in the region. Some additional uncertainty is 

contributed by debate in the literature on the extent to which atmospheric 

composition, including aerosol loading (independent of any SST change) may 

contribute to Sahel rainfall changes. The exact relative role of these factors remains 

under debate in the literature (as noted in Steptoe and Rowell 2018, e.g., Biasutti 

2013; Dong et al 2014; Dong and Sutton 2015; Janicot et al. 2015). 

Taylor et al. (2017) note an increasing frequency of extreme daily rainfall events 

occurring in the Sahel since the 1980s, which they speculate is attributable to 

increased intensity of the Saharan heat low. This may represent a process missing in 

the Sheen et al. (2017) prediction system (hinted at in their discussion section); it 

does not invalidate the Sheen et al. results, but may point to an area for potential 

improvement (in turn, related to GCM spatial resolution, see next section). 

Nicholson et al. (2018) build on work by Ali and Lebel (2009) to provide a 

comprehensive overview of Sahel rainfall variations from 1854 to 2014 (see Fig. 5). 

In addition to multi-year wet/dry phases throughout the historical record, these 

authors argue that Sahel rainfall underwent a regime change around 1968, moving 

into a drier regime, from which only partial recovery has occurred. They argue that, 
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based on the SST AMO index alone, recovery 2000-2014 should have been more 

complete, suggesting something else is limiting the recovery. This prompts the 

question whether in fact, such a process is operating in Sheen et al., such that 

recovery is correctly specified as only partial in the years 2-5 predictions. 

Nicholson et al. (2018) also note that recovery in the eastern part of the Sahel has 

been stronger, although no explicit trend analyses are offered to support the 

assertion. While Sheen et al. (2017) report skill levels for east and west Sahel 

separately (with the years 2-5 skill strong in both east and west), they do not 

diagnose any differences in trends (or mechanisms) in the hindcasts for the two 

regions. This represents an area for further investigation. 

The literature on recent trends therefore needs to be factored into interpretation of 

decadal predictions. It does not invalidate the strong decadal prediction skill found in 

Sheen et al. (2017) suggesting the system is capable of generating skillful predictions 

moving forward. But the trends literature does motivate continued diagnosis of the 

source of precipitation anomalies in experimental real-time decadal predictions. 

 

 7.2 Resolution of the contributing GCMs 

Spatial resolution of the GCM prediction system is an important parameter 

influencing the features that the model can directly represent. DePreSys3 in Sheen et 

al. (2017) is run at 60km resolution for the atmospheric component. A relevant area 

of development at the Met Office is a convection permitting GCM, being run at 4km 

resolution (Stratton et al. 2018). This has implications for resolving of processes and 

potential resolution of prediction: 

(i) Process: There are potential gains in model accuracy through being able to 

represent the interaction of the Sahara heat low with the increasing frequency of daily 

rainfall extremes (Taylor et al. 2017). There are also potential gains for simulating 

teleconnection mechanisms into the Ethiopia domain, where a high resolution model 

may resolve the influence of the complex orography and land/sea arrangements on 

regional climate patterns. It is widely reported that the Jul-Sep rains in Ethiopia are 

related to El Nino / Southern Oscillation (ENSO) (e.g., Koreche and Barnston 2006; 

Segele et al. 2015; Jury 2015) with a sign similar to the main Sahelian domain), yet 

GCMs have difficulty with simulating this connection (e.g., Degefu et al. 2017; 

Gleixner et al. 2017), which may be related to the complex orography in the Ethiopian 
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domain. Indeed one-year-ahead predictions have low skill in the vicinity of Ethiopia in 

Sheen et al. (2017). For 2-5 year ahead, there is some significant skill for Ethiopia 

(Fig. 4, left panel), but a higher resolution model may improve the representation of 

the trend component in such a complex orographic domain. 

(ii) Forecast resolution: For initial products, regional indices, as used in Sheen et al. 

(2017) provide solid foundation. However, with increased model resolution, the 

implications of the broad scale moisture convergence changes may be amplified or 

diminished in the presence of small scale landscape features such as coastlines, 

lakes and mountains. At this stage, this is considered secondary, and the main initial 

potential benefit from higher model resolution may be in the mechanism 

improvements and associated potential increases in prediction skill, as described in 

(i) above. 

 

 7.3 Eastern Sahel (especially Ethiopia) climate: aspects of Eastern Africa 

rainfall regimes 

This literature review domain extended in scope to Ethiopia and Eritrea. Parts of 

these areas, while experiencing important rains in Jun/Jul to Sep, also experience 

significant rains during Mar-May and Sep-Nov. These transition seasons connect to 

the broader East Africa bimodal rainfall regimes that have been widely studied at 

interannual and longer timescales. 

Of the transition seasons, Sep-Nov is generally considered the more predictable, with 

a strong positive association with ENSO warm events, modulated through influence 

of the Indian Ocean SST (e.g., Ogallo 1988). Recently, results are also optimistic for 

predictability in the Feb/Mar to May period as well. For example, Fekadu (2015), 

used SST in statistical methods with good success for the Feb/Mar – May rains in 

Ethiopia. Findings are supported by Funk et al. (2014) analyzing a broad domain 

extending across southern Ethiopia, eastern Kenya and southern Somalia. Generally, 

as alluded to above for Jun-Sep, the complex orography may again be limiting GCMs 

performance in the transition seasons (Funk et al. 2014), so it will be a valuable 

opportunity to explore predictability with new high resolution GCMs experiments for 

the transition seasons in Ethiopia/Eritrea and surrounding areas; the statistical results 

encourage that a strong signal should be possible with GCMs that adequately 

represents the key processes. 
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There is also interest in recent multi-year variations of Feb/Mar – May/Jun rains, with 

a series of failures from around 1999 until recently (Funk et al. 2014; Lyon 2014; 

Brown et al. 2017). Such variation represents a target for validation of decadal 

prediction, but again the resolution issue is relevant, as evidenced by the spatial 

nature of the decadal change (illustrated in Fig. 6) and associated impacts (as 

discussed in Brown et al. 2017).   

 

 7.4 Information on early/late season Sahel rains 

Forecast information about Sahel rainfall onset has long been desired by the 

agriculture community in particular. This has, to this point, proved mostly illusive, at 

least at local scales, due to local influences (e.g., Fitzpatrick et al. 2016). 

Encouragingly, Nicholson et al. (2018) report some consistent SST influence on 

Sahel rainfall in June, present across an extended analysis covering the years 1886-

2014, which may serve to motivate targeted exploration of rainfall onset in both 

seasonal and decadal prediction; Bliefernicht et al. (2016) report ongoing work 

seeking to extract early and late season rains from the CFS2 GCM seasonal forecast 

system. In addition, Steptoe and Rowell (2018) consider robust long-term projections 

for seasonality changes in Sahel rainfall (systematic early and late season changes) 

which also may motivate exploration of such instances in seasonal-decadal 

predictions. However, for the moment, focus on possible operational product 

development for the Sahel remains focused on the core rainy season Jul-Sep.  

 

 7.5 Rainfall versus Drought Predictability 

Drought monitoring and prediction has a broad community (e.g., Hao et al. 2018). 

Drought monitoring may focus on meteorological, hydrological or agricultural drought, 

which may take account of intraseasonal variations of rainfall and temperature, or 

direct sensing of vegetation status, for most effective detection of drought. It is still 

largely the case across literature that seasonal rainfall total is primarily used to infer 

drought severity in Sahel seasonal prediction work. A step toward more explicitly 

predicting meteorological drought is to use the standardized precipitation index (SPI) 

as a forecast target. This has been assessed in Dutra et al. (2013) for drought in 

African basins using ECMWF seasonal forecasts. The SPI though, is a relatively 

small step beyond using seasonal rainfall totals. One example of a comprehensive 
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approach to integrate monitoring and forecasting for sub-Saharan Africa (Sheffield et 

al. 2014) combines multiple ground data sources, remote sensing and environmental 

models (seasonal climate GCM, hydrology) in partnership with regional institutes in 

Africa.  The approach combines initial land surface conditions with expectations 

(seasonal forecasts) of climate to infer drought risk. Experimental forecast products 

are available 

(http://stream.princeton.edu/AWCM/WEBPAGE/interface.php?locale=en). For East 

Africa, in the context of FEWS-NET, Shukla et al. (2013) developed a more targeted 

system, but using similar modelling principles including land-surface models. Thus, 

examples exist of how to generate relatively simple drought index forecasts, or more 

complex drought forecasts informed by land-surface models. Potentially, decadal 

predictions may attempt to assess drought risks through such approaches. Indeed, 

while the methods of Sheffield et al. (2014) or Shukla et al. (2013) would require 

substantial implementation, some initial development could be achieved with a small 

amount of effort, translating the output of multi-year hindcasts into simple drought 

indices, such as SPI or water requirement satisfaction indices (WRSI), as has been 

widely used in monitoring contexts (such as by FEWS-NET 

https://earlywarning.usgs.gov/fews/search/Africa).  

Such indices like WRSI recognize that drought impacts are sensitive to distribution of 

rainfall through the season (e.g., Zhang et al. 2018). An example of targeted WRSI 

results in the interpretation of recent trends is in Brown et al. (2017), thereby 

incorporating sub-seasonal distribution as well as 

rain/temperature/evapotranspiration. A further approach in seasonal forecast work, is 

to predict crop yield directly as a proxy for drought (e.g., Mishra et al. 2008). All these 

represent options for improvements to more explicitly move from inference from 

seasonal rainfall total, such as the probability of the below normal rainfall tercile (or 

quintile), which have been most widely used. Good progress has been made on 

establishing the basis for such improvements through the assessment of 

predictability of daily rainfall characteristics within a seasonal forecast (e.g., Moron et 

al. 2018 and references therein). In the multi-year context, drought prediction may 

also address the risk of a sequence of years below a given threshold, as an 

indication of multi-year drought. 

Skill levels for predicting drought indices will be different from the skill levels for 

rainfall totals (as given in Figs. 3 and 4). Often in seasonal forecast settings, the skill 

levels are only modestly lower. However, a relatively small amount of work with the 

new decadal prediction hindcasts would be needed to confirm the way in which 

http://stream.princeton.edu/AWCM/WEBPAGE/interface.php?locale=en
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forecast uncertainty needs to be adjusted for 4-year drought expectations (as 

measured by simple drought indices), compared to 4-year seasonal rainfall 

expectation. 

 

8. Summary: Gaps and Potential Opportunities 

Decadal prediction science has been intensively investigated in the last 10-15 years, 

with emerging coordination and protocols through CMIP5 and CMIP6 (Boer et al. 

2016). In addition to scientific advances, the literature reports “quasi-operational” 

decadal predictions by various international GCM groups since about 2010. These 

experimental forecasts have been primarily for learning by the science community, 

not intended for users to base decisions upon. However, decadal hindcasts (1-year-

ahead, and years 2-5) produced for the Sahel over the period from 1960 to 2014 are 

showing great promise, both in terms of skill and in terms of diagnosed mechanisms, 

such that the Sahel may represent an opportunity for an experimental, more user-

driven, product. 

Moving forward, some of the key gaps and opportunities that the literature review has 

highlighted may be summarized as follows: 

Points with relevance primarily for forecast producers 

i) Hindcast production and diagnosis. This is critical to establish expected levels of 

skill, and is substantially done over 1960-2014 for DePreSys3 GCM in Sheen et al. 

(2017). If there is desire to increase confidence in any real-time product through use 

of more than one GCM (the preferred practice in seasonal prediction), then it appears 

there is still a need to diagnose the other “successful” models identified in Sheen et 

al. (2017, supplementary material) to be confident in the mechanisms giving rise to 

skill, and to explore if a multi-model combination can be limited to just skillful models, 

or weighted by skill. However, this may not prohibit moving ahead now with an 

experimental prediction based solely on DePreSys3, provided other aspects below 

are satisfied. 

ii)Need capacity to initialize and generate ensembles in real-time such that the 

available hindcasts can plausibly inform expected skill in real-time. This may already 

be the case, but is not obviously addressed in the literature (i.e. consistency of the 

experimental forecasts with the hindcasts needs confirmation). 
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iii)An experimental product for the Sahel would ideally require the scientist capacity 

to be in place to diagnose the source of any predicted anomalies (to ensure the 

mechanism is plausible and consistent with scientific understanding of Sahel rainfall). 

In addition, it is good practice to have capacity to validate the forecast, both for 

accuracy, and ideally in this experimental phase, in terms of mechanisms that gave 

rise to the observed anomaly. Given the product is potentially years 2-5, this implies 

a commitment on the part of the producer. 

Points requiring interaction between producers and users 

iv) Initial assessment of the possible format of a simple experimental product, such 

as a prediction of the likelihood of years 2-5 mean rainfall terciles (analogous to a 

seasonal forecast generic product). However, extraction of probabilistic information 

for decadal predictions requires assessment (mature in seasonal forecasts, which 

may provide insights).  In addition, the spatial scale of the forecast needs 

assessment; for example, the regional indices assessed for whole Sahel, and 

east/west Sahel (as in Sheen et al. 2017) provide solid foundation. Development to 

national scale may involve national meteorological expertise, including for validation 

of model hindcasts / experimental real-time forecasts and stakeholder interaction. 

This also has implications for capacity at national level meteorology services, where 

discussion may consider the extent to which this may be a relatively efficient addition 

to the existing capacity for the currently operational short-lead seasonal forecast. 

v) Assess if and how to design best recent climate information products to enhance 

value of decadal predictions (e.g., graphical presentation of trends and mean 

anomalies (respect to long-period averages) for e.g., the last 10-years, the last 30-

years; does forecast continue recent trends etc.). 

vi) Explore more tailored forecast formats, such as translation into the risk of drought 

as measured by drought indices, both for the 4-year period combined, or broken out 

into the risk of an extreme drought year within the 4-year period, or sequences of 

back-to-back droughts in the 4-year period etc. 

Science Issues 

vii) Some science issues potentially leading to quick improvement and extension of 

products: Potential improvements through the application of a higher resolution GCM 

have been noted, motivating diagnosis of such experiments. For the easternmost 

part of the Sahel region (especially Ethiopia and Eritrea), large gains may be possible 
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with the high resolution model, as well as exploring rains outside the Jul-Sep window, 

which in easternmost areas can be substantial. Indeed, recent multi-year variations in 

Mar-May in this region (which extends southward into Eastern Africa more generally) 

may form natural targets to explore for decadal predictability, given they have been 

diagnosed as related to SST in the literature. 
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TABLES 
 
TABLE 1: From Sheen et al. (2017, supplementary material), introducing the discussion of skill across 
different models for the interannual and multi-year information, and comparisons to persistence skill. 
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FIGURES 

 

Fig. 1a. Dynamical predictions from the Met Office GloSea4 system initialised in April for the July-
September Sahel rainfall. Source: Met Office. © Crown Copyright. As shown in the review by Colman 
et al. (2017). 

 

 

Fig. 1b. Example of operational seasonal forecast probabilities of the tercile category (given in the 

three boxes), along with color-coded presentation of the forecast with clarifying worded 

communication.http://acmad.net/rcc/presao.php. 

http://acmad.net/rcc/presao.php
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Fig. 1c. Example of operational multi-model combination and calibration for forecast of tercile 

category. Barnston et al. (2010) provide discussion of methods underpinning this product.  

https://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/ 

 

 

 

 

 

 

https://iri.columbia.edu/our-expertise/climate/forecasts/seasonal-climate-forecasts/
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Fig. 2a. Example of the evaluation of Decadal Prediction Experiments. Correlation skill for Year 1 and 
Year 2–5 forecasts of surface air temperature, based on averaging the results from different models: 
CanCM4, GFDL, MPI-ESL-LR, MIROC5, HadCM3 and the HadCM3 PPE hindcasts. Stippling denotes 
that the results are significant at the 10% level (using a two-tailed test). As shown in Boer et al. 2016. 

 
 

 

Fig. 2b. Correlation skill for the AMO index computed from seven models from the CMIP5 multi-model 

ensemble. Correlations are calculated from the time series obtained by averaging hindcasts and 

model results for various prediction times (e.g., 1–4 years, 2–5 years, etc.). High correlations indicate 

better predictive skill, and are generally better for prediction time periods closer to the initial time (e.g., 

predictions for years 1–4 are generally better than for those for years 6–9). Each model is represented 

by a colored line, the multi-model ensemble is the solid black line, and persistence (taking the initial 

state and persisting it in time) is the dashed black line. The solid and dashed horizontal lines represent 

significance at the 95% and 90% levels, respectively (Kim et al. 2012). As shown in Meehl et al. 2014. 
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Fig. 2c. Precipitation predictive skill (correlation with observations, *100), predictions for years 6–9 

averages based on CMIP5 multi-model ensemble mean hindcasts. Results are from initialized 

hindcasts with 5-yr intervals between start dates from 1960 to 2005. Correlations are calculated by 

averaging all the hindcasts from all the models for each start date for the 6–9-yr hindcasts. Stippling 

indicates significance at the 95% level (Doblas-Reyes et al. 2013). As shown in Meehl et al. 2014. 
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Fig. 3. Skill of Sahel rainfall predictions, 1-year-ahead seasonal forecast. Model is initialized in 

November, to forecast the following year’s July-September Sahel rainfall. Left panel shows the 

correlation skill at each grid-box (stippled is significant at the 95% level). Right panel shows the 

predicted and observed rainfall averaged across the Sahel region. Note that prior to 1980, 

experiments are run only for selected years (for information, where a forecast is not run, the observed 

rainfall value is still shown in light gray). From Sheen et al. (2017) 

 

 

Fig. 4. Skill of Sahel rainfall predictions, Year 2-5 mean rainfall (e.g. model is initialized in Nov 1960, 

predicts the mean July-September Sahel rainfall for the years 1962-1965). Left panel shows the 

correlation skill at each grid-box (stippled is significant at the 95% level). Right panel shows the 

predicted and observed rainfall averaged across the Sahel region. From Sheen et al. (2017). 
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Fig. 5. Time series of Sahel rainfall from 1854 to 2014. Rainfall is represented by a regionally 

averaged standardized departure from the long-term mean (i.e., the total record length for each 

station). A value of 1 is equivalent to one standard deviation. The dashed vertical line indicates the 

year 1968. The number of stations in the average is indicated at the bottom in green. From Nicholson 

et al. (2018). (The years indicated in red along the x-axis are those to which a scaling factor was 

applied due to small number of contributing stations). 

 

 

Fig. 6. March–June 1999–2014 changes in standardized seasonal precipitation (SPI) (relative to 
earlier epoch) based on the CHIRPS rainfall dataset. The map shows the changes across Ethiopia 
and surrounding locations. Areas with climatological mean rainfall of less than 50 mm were removed 
from the analysis. From Brown et al. (2017). 

 


