## Making an Operational Mission Happen

Douglas Biesecker

NOAA/NWS/NCEP/Space Weather Prediction Center

## Outline

- Requirements
  - Operational v Science
- Proving something will work
  - False alarms and misses are the enemy
- The satellite
  - Class A, B, C, D?
  - Lifetime requirement
- The ground system
  - Receiving stations and telemetry
  - A Lesson from STEREO
- L5 (or on the way there) is good
  - Another lesson from STEREO
- NOAA L5 Requirements
- My thoughts on Carrington

### **NOAA Requirements Process**

### • The good

- Threshold requirements must be backed up by scientific literature
  - Goal requirements can be wishful thinking
    - You'll only get the goal if it's essentially free
- Justifying requirements is difficult

### • The bad

- NOAA requirements documentation format is Earth science driven
- Platform driven
  - A coronagraph at L1 and a coronagraph on ISS would need different requirements for FOV and cadence

All new programs get reviewed at the NOAA, Department of Commerce, and ultimately at the OMB level. If it makes it through all of these, it appears in the President's Budget, then Congress makes the final decision Thus, we need very strong justifications on the benefit and to demonstrate that this is the best and/or only solution.

Carrington should carry only things that have added value because of L5.

## What NOAA needs to set/change a requirement

Setting/changing a requirement is a stringent process

- The need must be clear, strong, and documented
- Documentation can be
  - Journal article, workshop report, program review document, technical memo...
- We need document reference, page, paragraph, explanation, and rationale.
  - I'm looking for the one sentence that says:

"...the instrument sensitivity is required to be 5% in order to get model performance that results in a 50% improvement in predicting..."

To justify an increase in funding for numerical model transition, at the NOAA/Commerce level, I had to show that WSA-Enlil improves prediction by factor of 2, from the literature. (Taktakishvili *et al.* 2009)

## **CME** Requirements

### What they are:

| Observation          | Solar Imagery: Corona, L1                                 |  |
|----------------------|-----------------------------------------------------------|--|
| Requirement          |                                                           |  |
| Priority             | 1                                                         |  |
| Spatial Coverage     | Heliocentric                                              |  |
| Vertical Range       | 3-17 Rsun                                                 |  |
| Spatial/Angular      | 50 arcsec                                                 |  |
| Resolution           |                                                           |  |
| Measurement Range    | 1x10 <sup>-11</sup> – 1(5)x10 <sup>-8</sup> B/Bsun/pixel  |  |
| Measurement Accuracy | 10% (flux)                                                |  |
| Sampling Frequency   | 15 minutes                                                |  |
| Data Latency         | 15 minutes                                                |  |
|                      | Additional Requirements                                   |  |
| *Pointing Knowledge  | 25 arcsec                                                 |  |
| *Spectral Response   | White-light w/option for                                  |  |
|                      | polarization                                              |  |
| *Flux resolution     | 1x10 <sup>-12</sup> – 2x10 <sup>-11</sup> B/Bsun/pixel in |  |
|                      | the outer/inner FOV                                       |  |

. What they should be:

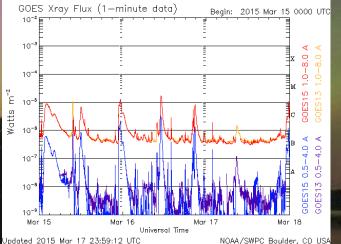
• The purpose of NOAA CME imagery is to enable detection and characterization of CME's in the low corona.

- NOAA requires a minimum of two images of every potentially geo-effective CME be fit with a Cone Model to derive inputs for heliospheric propagation models.
- NOAA requires that plane of sky positions of the CME leading edge are measured in a minimum of three images.
- CME mass is to be computed for all images containing a CME.

### **Contingency Tables and Skill Scores**

- Skill scores just boil the contingency table down to one number
- A forecaster basically thinks like a 2x2 contingency table
  - Hits and correct negatives are what you want (*e.g.* Heidke Skill Score)
  - Too many misses or false alarms and the forecaster won't even look at your model
- Too many scientists look only at hits
  - I can't convince NOAA if I can't justify all four quadrants

| 2x2 Contingency Table |     | Event Observed |                  |  |
|-----------------------|-----|----------------|------------------|--|
|                       |     | YES            | NO               |  |
| Event                 | YES | Hit            | False Alarm      |  |
| Event<br>Forecast     | NO  | Miss           | Correct Negative |  |


N = Hits+Misses+False Alarms+Correct Negatives

| >10MeV Proton Events<br>Balch 2007 |     | Event Observed |      |  |
|------------------------------------|-----|----------------|------|--|
|                                    |     | YES            | NO   |  |
| Event<br>Forecast                  | YES | 72             | 55   |  |
|                                    | NO  | 89             | 3567 |  |

### Science with an Operational Mission

- Mixing science and operations opens the door to requirements creep and cost growth
  - Greatly increases the odds of getting nothing
- 2006 NOAA Drops GOES-R Sensor
  - Hyperspectral Environmental Suite (HES)
    - http://www.space.com/2904-noaa-dropssensors.html
    - Successor to the Sounder that had flown for many years on many successive GOES missions
    - From 18 IR bands to 1500
    - 10x greater spatial resolution
- 2010 NPOESS terminated
  - A key issue was requirements
    - Complexity of multi-agency requirements
- Don't many of you do research with NOAA's Operational GOES instruments?
  - X-rays, Protons, Electrons, Magnetometers...

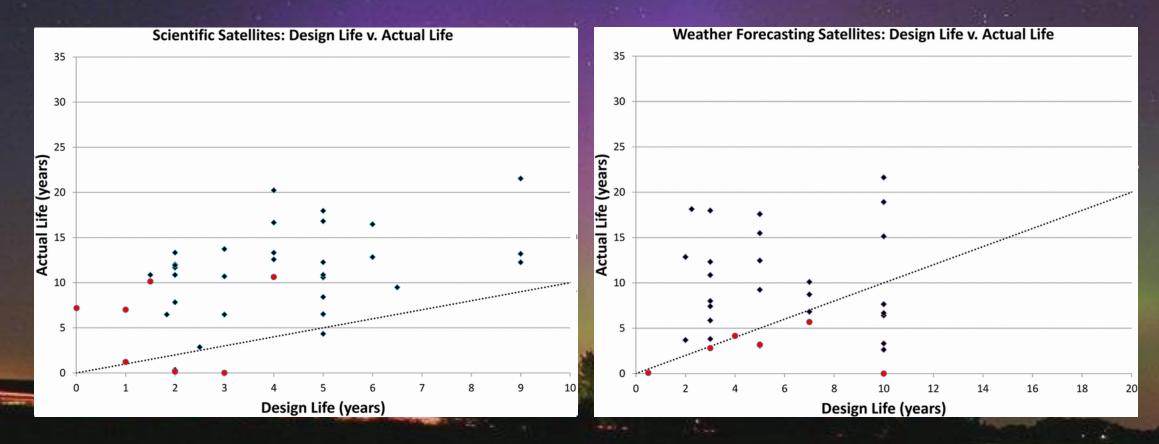




Science from an Operational Mission: L5 Consortium meeting

### What class do you want to be (NASA NPR 8705.4)? GOES-R started as Class A but is now Class B

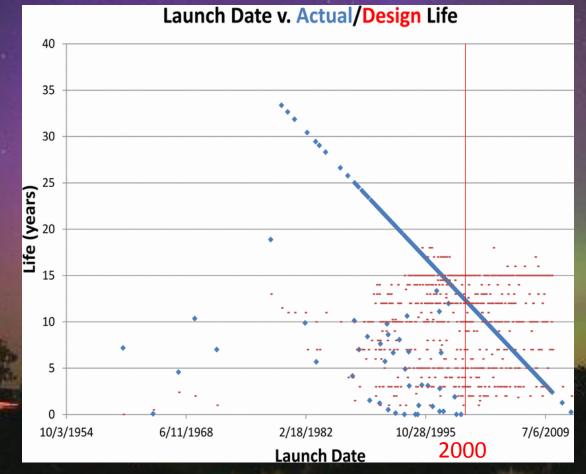
| Characterization             | CLASS A            | CLASS B        | CLASS C                     | CLASS D       |
|------------------------------|--------------------|----------------|-----------------------------|---------------|
| Priority                     | High               | High           | Medium                      | Low           |
| National Significance        | Very high          | High           | Medium                      | Low to Medium |
| Complexity                   | Very high to high  | High to medium | Medium to low               | Medium to low |
| Baseline Mission<br>Lifetime | >5 years           | 2-5 years      | <2 years                    | <2 years      |
| Cost                         | High               | High to medium | Medium to low               | Low           |
| Re-flight<br>opportunities   | None               | Few or none    | Some or few                 | Many          |
| Examples                     | HST, Cassini, JWST | MRO, MER       | Explorer Payloads,<br>MIDEX | SPARTAN, SMEX |


http://nodis3.gsfc.nasa.gov/npg\_img/N\_PR\_8705\_0004\_/N\_PR\_8705\_0004\_.pdf

### NASA Recommended Program Requirements by Class

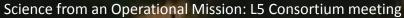
|                                        | CLASS A                                                                                                                                                                    | CLASS B                                                                                                                                                                                                      | CLASS C                                                                                                                                                                  | CLASS D                                                                                                                   |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Single Point Failures (SPFs)           | Critical SPF's not permitted<br>without formal waiver                                                                                                                      | Critical SPFs may be permitted<br>but are mitigated by use of high<br>reliability parts and additional<br>testing.<br>Essential spacecraft functions and<br>key instruments are typically fully<br>redundant | Critical SPFs may be permitted<br>but are mitigated by use of high<br>reliability parts, additional<br>testing. Single string and<br>selective redundancy may be<br>used | Same as Class C.                                                                                                          |
| EEE Parts<br>http://nepp.nasa.gov/npsl | NASA Parts Selection List (NPSL)<br>Level 1                                                                                                                                | Class A requirements or NPSL<br>Level 2                                                                                                                                                                      | Class A, Class B or NPSL Level 3                                                                                                                                         | Class A, Class B, or Class C                                                                                              |
| Reviews                                | Full formal review program at<br>Center level. Formal inspections<br>of software requirements, design,<br>verification documents and code.                                 | Same as Class A except peer reviews of code.                                                                                                                                                                 | Same as Class A except peer reviews of design and code.                                                                                                                  | Reviews can be delegated to<br>project level. Peer reviews of<br>software requirements, design<br>and code.               |
| Materials                              | Verify heritage of previously used<br>materials and qualify all new or<br>changed materials. Use source<br>controls on procured materials<br>and acceptance test each lot. | Use previously tested/flown<br>materials or qualify new<br>materials. Acceptance test each<br>lot.                                                                                                           | Use previously tested/flown<br>materials or characterize new<br>materials. Acceptance test<br>sample lots.                                                               | Requirements based on<br>applicable safety standards.<br>Materials should be assessed for<br>application and life limits. |

### Are these so last century?


## Design Life vs Actual Life



Fox et al, Aerospace Conference, 2013 IEEE, Issue Date 2-9 March 2013


Science from an Operational Mission: L5 Consortium meeting

# Modern satellites keep on ticking – if they survive launch



#### Since 2000

All satellites have exceeded their design life



## The Ground Segment

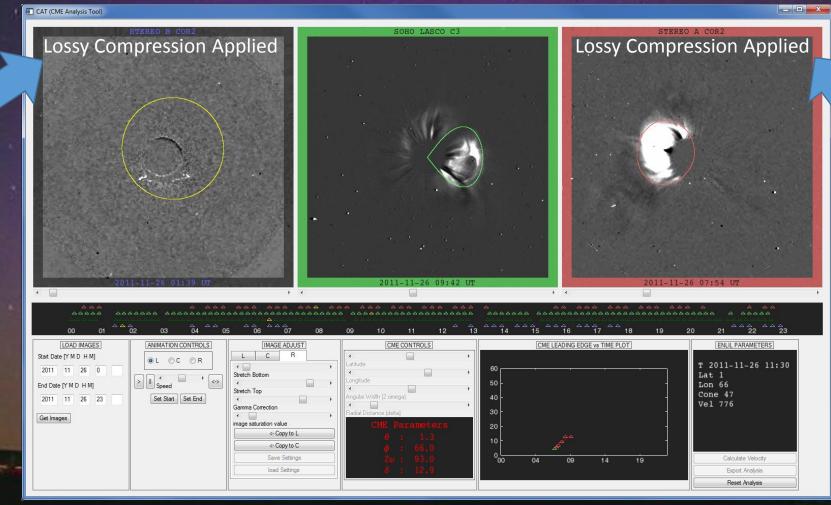
- Space Weather and L1 and L5 present the problem of requiring continuous tracking from stations spread across the globe
  - Did it with ACE (the Real-Time Solar Wind Network)
    - Well, we still need that for L1/DSCOVR/Space Weather Follow-on
  - Kind of did it with STEREO (633 bps)
    - Receiving stations in Asia and Europe
    - Receiving Turbo encoded telemetry at X-band
      - Pretty much hits the theoretical limit of link margins
    - Stations are typically not operational
      - Redundancy of multiple stations provides the necessary continuity

 Every reason to believe the STEREO Beacon Network will be available for an L5 mission

### STEREO Tracking Sites (Turbo)



Dedicated station As available




#### As Available Stations

 JHU /APL currently primary for Van Allen Probes

 NICT generally available every day. Shared with an astronomy mission

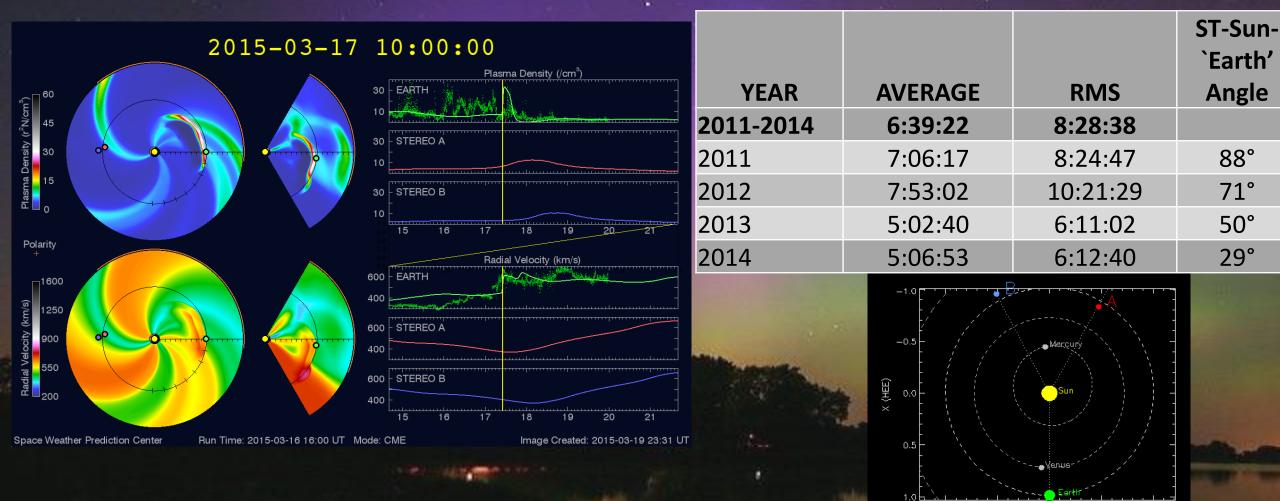
## SWPC CME Analysis Tool (SWPC CAT)



3D rendering of 'lemniscate' (tear drop) onto images from STEREO and LASCO

Assume circular symmetry

## Pretty Much Any Location Works


**CME/ICME** Arrival Time Prediction Error

-1.0

-0.5

0.0 Y (HEE) 0.5

1.0



### **STEREO HI was another story**

- STEREO/SECCHI used a tunable compression scheme
  - Wavelet based
- Retuned HI-1 in Nov 2007
  From 6kB to 23kB per image

• HI-2 was a problem

- Binned and lossy compressed images were worthless
- Retuned HI-2 in 2009
  - Masked to retain Sunward half only
  - 4x4 binned (*i.e.* 128x256)
  - Pixel values clipped at 2<sup>20</sup>-1
  - 4 least significant bits removed
    - 32 bit precision reduced to 16 bit
  - Rice compressed

## **NOAA Requirements for L5**

Prioritization is Doug Biesecker's. This is not an official SWPC or NOAA prioritization. However, all of those listed are on the official NOAA requirements list.

- 0) Coronal Imaging
- 1) Interplanetary Magnetic Field (0-100 (150 nT))
- 1) Plasma Velocity, Density, and Temperature (200-2000 (2500) km/s, ...)
- 1.5) Heliosphere Imaging
- 2) Magnetograph
- 3) Energetic Protons
- 4) High Energy Electrons
- 5) EUV/X-Ray Imaging

### Doug's Comments on Carrington

Agree that Magnetograph takes priority over EUV imagery

- However, forecasting requires not only region complexity, but flare history.
- Recommend the GOES-R XRS
  - low data rate and can give flare intensity and location
- Would recommend not going beyond SWPC requirements
- Compress the data as needed to allow existing 'free' networks to receive the data
  - On order of 13m dishes
- Consider co-launch with Space Weather Follow-on

Provide data during cruise to L5

## Thank you!

### For anyone headed to HELCATS in Göttingen



