

L5 operational science

François-Xavier Bocquet, Edmund Henley, Sophie Murray, David Jackson

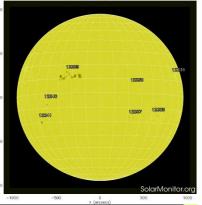
13 May 2015

Many thanks for useful input from many others in the Met Office space weather research & forecasting teams; Masha Kuznetsova & CCMC colleagues; Matt Owens & Reading U. colleagues; Claire Foullon & Exeter U. colleagues

www.metoffice.gov.uk

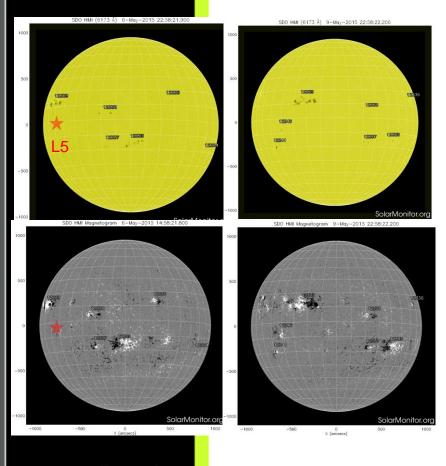
Overview

• Description of Met Office forecasts and our need for L5 observations:


- flare forecasts
- solar wind statistical models
- deterministic / probabilistic forecasting of solar wind & CMEs
- Potential for new science:
 - Data assimilation
 - Improved CME ensemble modelling
 - Substorm onset prediction using L5 measurements
- Instruments wishlist

Flare forecasting

www.metoffice.gov.uk

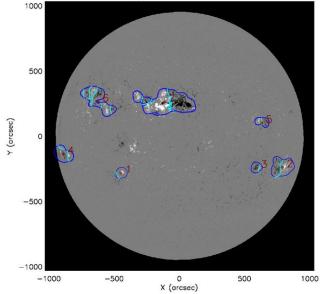

Statistical forecasting model

- Flare forecasting model relies on
 - McIntosh sunspot classification & 30 year climatology of flares
 → climatological probabilities
 - Size of the sunspot group and # of spots
 - History of the sunspot group
 - Forecaster experience
- Returns probabilities for M, X class flares

No.	Loc	Lo	Area	Z	LL	NN	Mag type	Gro wth	Μ	X	Ρ
2339	N12 E34	129	1387	Fkc	19.	24	βγδ	Nil	66	18	6

Met Office

Improved flare forecasting with L5 magnetograms



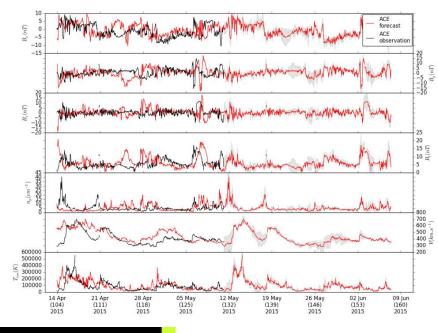
- X2.7 flare from AR12339 resulting in radio comms blackout in Pacific area
- Extremely limited info for forecasting for active region emerging on the limb (impossible to use classifications; no history;...)
- L5 viewpoint would have provided parameters for flare forecasting models plus flaring history for the active region
- Vector magnetograms could be used to drive codes to model evolution of the active region, yielding magnetic free energy, current density,...

SMART model

11-May-2015 07:58:22.500 UT

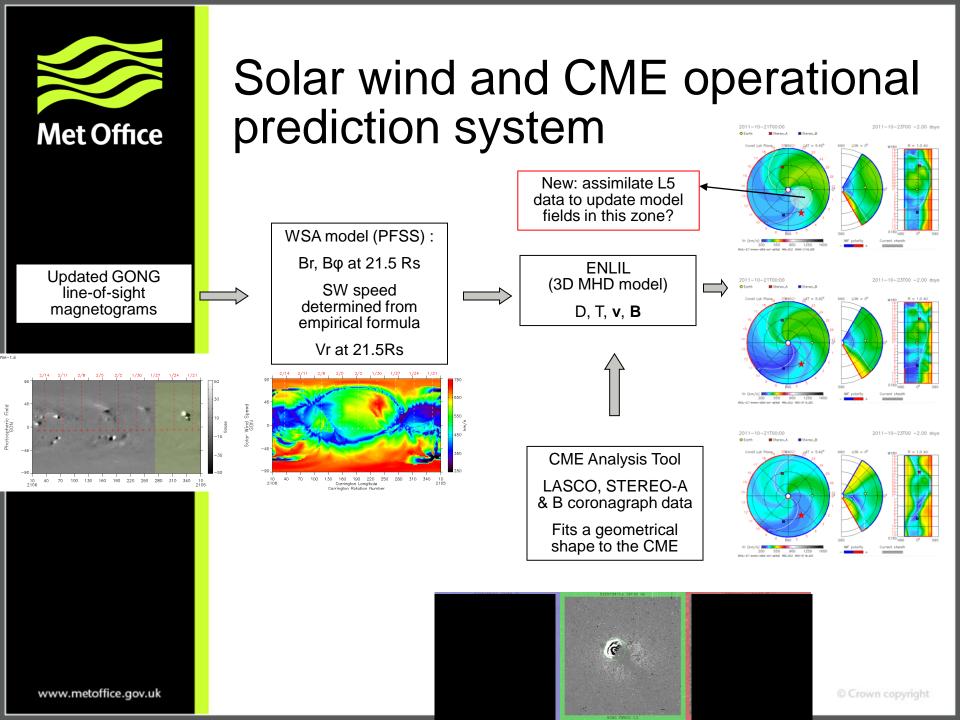
WL_sg G/Mm	R value Mx	B_max G	B_min G	Area_tot m.s.h.	Flux_tot Mx	Lon + W	Lat + N	AR #
4.04E+03	4.10E+03	1900.78	-523.93	88.34	3.75E+21	-29.98	-19.96	1
1.91E+04	1.86E+04	1548.08	-826.69	605.65	2.77E+22	59.75	-16.02	2
0.00E+00	3.28E+03	516.44	-692.47	60.62	3.01E+21	40.52	-17.18	3
9.09E+04	7.92E+04	2269.22	-1797.11	827.09	3.08E+22	-71.42	-9.25	4
0.00E+00	3.96E+03	629.03	-642.87	55.60	3.35E+21	41.57	3.80	5
2.28E+03	1.84E+04	1168.53	-1497.13	405.01	1.90E+22	-42.37	13.87	6
9.60E+04	5.52E+04	1736.77	-2110.36	1594.62	5.60E+22	-7.22	12.79	7

Property description: Heliographic latitude and longitude [degrees]; Total flux [Maxwell]; Total area [millionths of a solar hemisphere]; Minimum and maximum total field strength [Gauss]; Schrijver R value [Maxwell]; Falconer's WL_sg [G/Mm].



Solar wind modelling

www.metoffice.gov.uk


Persistence model of the solar wind

Real-time persistence forecast using ACE

Skill	Bx	Ву	Bz	В	Np	Vp	Тр
ACE	0.3	0.2	0.04	0.17	0.54	0.56	0.44
STEREO	0.4	0.3	0.2	0.25	0.23	0.65	0.29

- Reading work showed strong 27 day autocorrelation in solar wind parameters allows use of persistence models
- Similar forecast can be produced using "fresher" data from L5 instead
 - 4.5-day-old data, not 27-day-old
- •Test done when STEREO-B was near L5 showed improvements to skill scores
- •Instrument requirements:
 - magnetic field and plasma
 - heavy ions (identify CMEcontaminated periods & replace with older "clean" data)

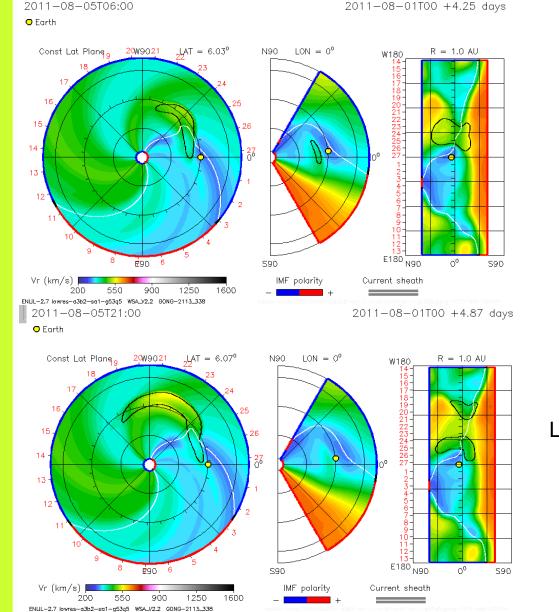
Current limitations for ambient & transient solar wind predictions

Ambient

- relies on accurate magnetograms used to derive solar wind speed (semi-empirically) at model inner boundary
- errors are often of the order of 20% of the solar wind speed
- issue with exact timing of CIR arrivals
- Could be corrected using data assimilation of in-situ data

Transient

- CME parameters (speed, location, cone angle) are usually determined using a combination of LASCO and STEREO coronagraph imagery
- Possible to get CME arrival time error to within 6 hours
- now limited to LASCO only – degrades forecast accuracy



Using L5 data to improve ENLIL predictions

- L5 in-situ data to drive data assimilation (merging data and model) enhancing ENLIL's background solar wind and CME prediction
- L5 coronagraph to improve CME initial conditions
- L5 magnetograms to provide more up-to-date boundary conditions to ENLIL
 - ADAPT maps infer active regions on the far side but detail is limited
 - Current synoptic map uses data from the last 27 days, but could be updated with L5 magnetograms
 - Need to investigate creating synoptic map using L5 and Earth-based / SDO magnetograms
 Crown copy

Dependency on coronagraphs

CME fit using LASCO C3 + STEREO B

Export Analysis Reset Analysis

www.metoffice.gov.uk

0.0 Y (HEE)

In situ instrumentation and **SEPs**

•Backside ~X flare seen by STEREO B on Sep 1 2014 1105Z

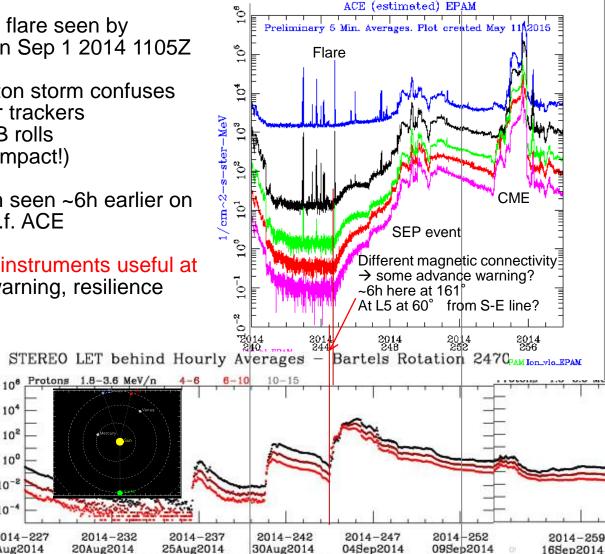
•Ensuing proton storm confuses STEREO star trackers \rightarrow STEREO B rolls (e.g. of SEP impact!)

 Proton storm seen ~6h earlier on STEREO B c.f. ACE

 Similar SEP instruments useful at L5 for early warning, resilience

104

10² 10⁰

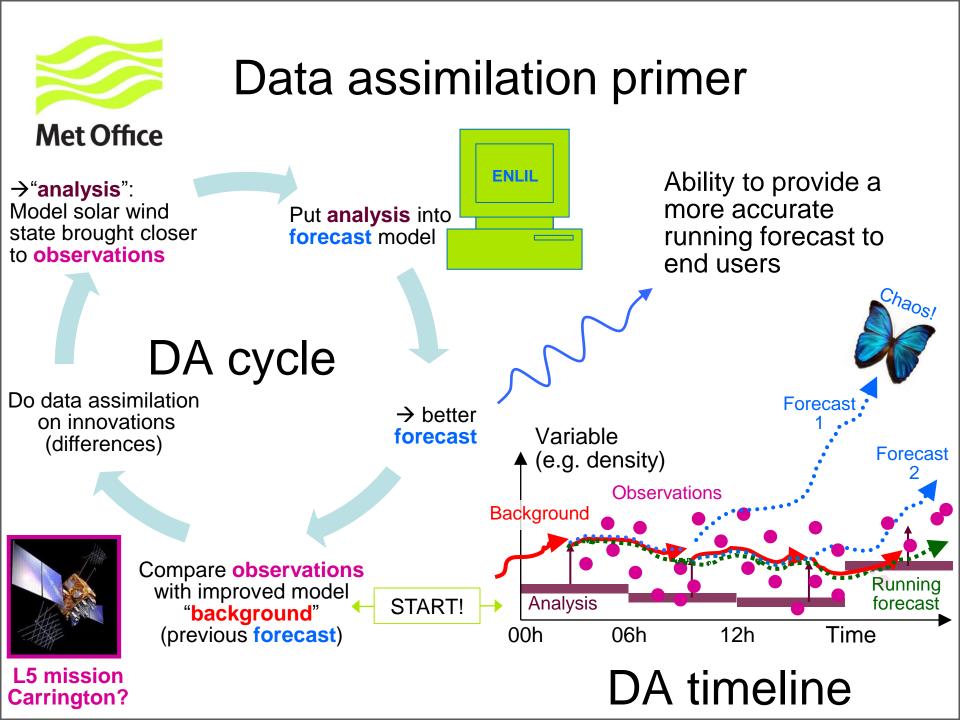

10-2 10-4

2014-227


2014 - 232

Public Level 1 Data. Thu Jan 29 11:01:36 PST 2015

20Aug2014


16Sep2014

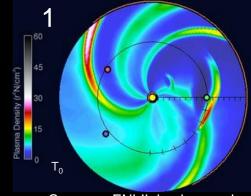
New developments

www.metoffice.gov.uk

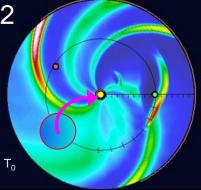
Context

Assimilation plans

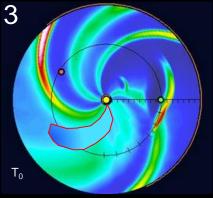
Developing in conjunction with University of Reading

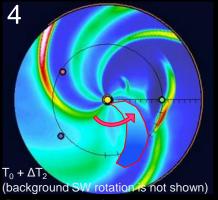

Starting with in situ data (plasma, magnetic field)

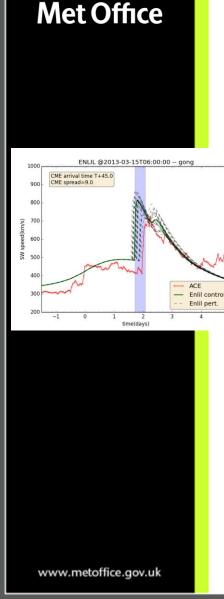
Other observations may be useful later


• e.g. HI data – increments more complex – 3D from 2D – yet coverage better – less of a point measurement

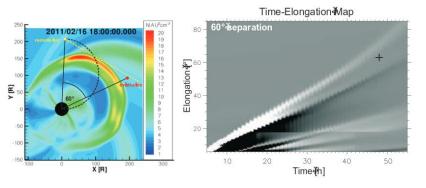
Will be doing this with STEREO data; proof of concept for L5


Improving ENLIL solar wind via data assimilation, for better forecasts of solar wind at earth & more accurate predictions of CME arrival times


Compare ENLIL background solar wind & in situ data at T_0 (here data lower density)


Get local increment, & via e.g. variational technique the source increment at 25 R_s at $T_0 - \Delta T_1$

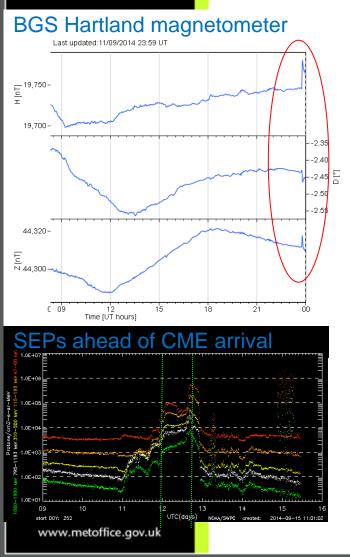
Apply source increment, run ENLIL forward to $T_0 \rightarrow \text{good}$ analysis – model solar wind is balanced, yet closer to observations – more realistic



Persist source increment to $T_0 + \Delta T_2 \rightarrow$ better solar wind forecasts at earth; better also between sun & earth \rightarrow more accurate CME arrival times

Heliospheric imagers

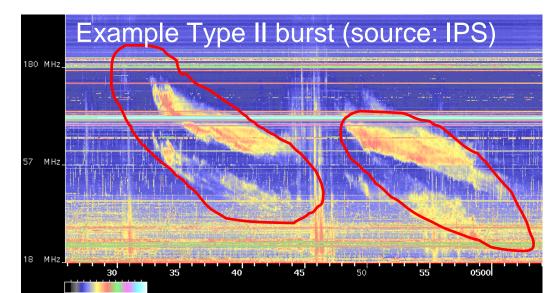
- Can be used to prune down a CME ensemble forecast
 - Generate synthetic Jmaps for each ensemble member


Lugaz 2009, Rollett 2013

 Forecaster / computer compares actual HI Jmaps to model Jmaps, rejecting (model) ensemble members disagreeing most with observations
→ more realistic ensemble spread

 Can also highlight discrepancies between modelled CME and observed CME front → potential for forecasters to correct forecast, or at least estimate the sign of the bias

Sudden impulses and Sudden Storm Commencements



- SI and SSCs can be linked to solar wind dynamic pressure enhancements associated with shocks
- Response depends on Bz some predictability from persistence models
- •Upstream measurements of dynamical pressure and Bz at L5 could increase predictability of these events – either with statistical models or feeding in the pressure pulse into a magnetospheric model
- •Likely to help most with CIR-linked effects, maybe some help for CME-linked too?
- •SEP measurements may help here too

Met Office

Real-time space-based type II / IV radio burst signatures

- Space-based measurements of type II / IV radio bursts may help determine CME initial speeds, back up imagery
 - Accuracy of CME speed estimates unclear, but worth pursuing
- Needs to be near-real-time early signature of CMEs
 - Current space-based observations (WIND) not nearreal-time
 - Current ground-based observations near-real-time, but limited by cut-off

www.metoffice.gov.uk

L5 instruments wishlist

www.metoffice.gov.uk

L5 instruments wishlist

•Plasma and magnetic in-situ observations:

- Persistence models (incl. heavy ions O⁷/O⁶, Q_{Fe})
- Data assimilation into ENLIL → knock-on effect on CME arrival times
- Substorm prediction due to SW pressure enhancements
- Improved advance warning for SEPs

•Coronagraphs and heliospheric imagers:

- Coronagraphs: crucial for CME fits and hence arrival times; redundancy for LASCO
- HI for pruning ensembles; idea of error in ENLIL prediction; data assimilation

•Magnetograms (line-of-sight and vector):

- Flare forecasting
- SW modelling (improved boundary condition to ENLIL)
- •Radio measurements (type II / IV signatures)
 - Improved CME arrival times, backup for imagery

Discussion

www.metoffice.gov.uk