L5 mission from the perspective of the ESA SSA system

Juha-Pekka Luntama

ESA SSA Programme Office European Space Agency

Science from an Operational Mission: An L5 Consortium Meeting 11-14 May 2015 London, UK

www.esa.int

uropean Space Agency

ESA SSA SWE Segment Objectives

Detection and forecasting of the Space Weather events and its effects on European space assets and ground based infrastructure

SSA SWE Customer Requirements Document

- The SSA system shall provide space weather measurement data
- Solar wind bulk velocity and density at L1
- Interplanetary magnetic field at L1
- Stereoscopic solar images of CMEs and CIRs
- The SSA system shall provide near real-time monitoring of space weather including magnetic storms, substorms, high-speed streams, solar energetic particle events, Earth-directed CMEs,...
- The SSA system shall provide alarms based on solar events
- Forecasting of space weather and its effects

ablical overview of the solar and interglanetary conditions supporting fails evaluation of high-energy proton events for the Rosetta mission, of the tablest caces awather backing proton during the BAA space wather service network

SSA SWE System Requirements Solar and interplanetary Measurement data

Sun-Earth line	Outside Sun-Earth line
EUV images	EUV images
White light coronagraph images	White light coronagraph images
 Solar disk magnetic fields 	Heliospheric imaging of the Sun-Earth line
While light solar imaging	Data on Interplanetary Medium Outside L1 - Nowcast
Solar disk magnetic fields	
H-alpha images	
Soft X-ray images	
Radiospectrographic observations	
EUV, X-ray and UV flux	
In-situ proton, electron and heavy ion data at L1	
> IMF at L1	
Solar wind bulk velocity, density and temperature at L1	

ESA SSA SWE System

SSA SWE Architecture Definition Studies

- Two parallel SSA SWE Segment architecture definition studies performed in 2012 - 2014
- Objective: Definition of a system capable of fulfilling all SWE Customer and System requirements
- Top-down approach
- Utilisation of existing assets considered in the second part of the study
- Study consortiums led by:
 - Airbus Defence and Space GmbH
 - OHB System AG

Hilda Kinter, OHB System AG Ole Morten Olsen, Kongsberg Spacetec 09.12.2014, Paris

CO-II SWE Study Final Presentation

We. Create. Space.

Some Results from SWE Architecture Study

- In-situ observations in L1 are mandatory for SWE services
- L5 (away from Sun-Earth line) is a potential way to improve SWE forecasting
- Candidate payloads for L5 include as minimum
 - EUV imager
 - Coronagraph
 - Heliospheric imager
 - High energy proton and ion detectors
- Analysis of the study results ongoing

SSA SWE Space Segment Development

- SSA Period 2 includes activities for
 - Phase C/D developments of SWE instruments for HP missions: magnetometer, electron spectrometer, EUV imager, miniaturised radiation monitors, ...
- ESA technology programmes include instrument prototyping activites e.g.
 - HOPE-M: Compact hot plasma monitor
 - 3DEES: 3-d Energetic Electron Spectrometer
 - SCOPE: Prototyping of a compact coronagraph
- => Candidate instruments for L1 and L5 missions
- Concept studies for operational SWE missions to L1 and L5 to be started shortly
 - Two parallel studies to identify mission concepts and consolidate cost estimates

SWE Segment Objectives in SSA Period 3

Transition towards an operational system

- Integration of more European SWE assets into the system
- SLAs with service and data providers
- Development of new services in the framework of the SWE Expert Service Centres
- Ensured long term availability of observation data
 - SWE space segment development
 - Implementation of the first dedicated space weather satellite mission
 - Hosted payload missions of European SWE instruments
 - International collaboration and data exchange
- Enhancement of the underpinning science for more reliable SWE forecasting

THANK YOU

swe.ssa.esa.int www.esa.int

European Space Agency