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ABSTRACT—Stephanie C. Herring, Martin P. Hoerling, James P. Kossin, Thomas C. Peterson, and Peter A. Stott

Understanding how long-term global change affects 
the intensity and likelihood of extreme weather events 
is a frontier science challenge. This fourth edition of 
explaining extreme events of the previous year (2014) 
from a climate perspective is the most extensive yet 
with 33 different research groups exploring the causes 
of 29 different events that occurred in 2014. A number 
of this year’s studies indicate that human-caused climate 
change greatly increased the likelihood and intensity for 
extreme heat waves in 2014 over various regions. For 
other types of extreme events, such as droughts, heavy 
rains, and winter storms, a climate change influence was 
found in some instances and not in others. This year’s 
report also included many different types of extreme 
events. The tropical cyclones that impacted Hawaii were 
made more likely due to human-caused climate change. 
Climate change also decreased the Antarctic sea ice 
extent in 2014 and increased the strength and likelihood 
of high sea surface temperatures in both the Atlantic and 
Pacific Oceans. For western U.S. wildfires, no link to the 
individual events in 2014 could be detected, but the overall 
probability of western U.S. wildfires has increased due to 
human impacts on the climate.

Challenges that attribution assessments face include 
the often limited observational record and inability of 
models to reproduce some extreme events well. In 
general, when attribution assessments fail to find anthro-
pogenic signals this alone does not prove anthropogenic 
climate change did not influence the event. The failure 
to find a human fingerprint could be due to insufficient 
data or poor models and not the absence of anthropo-
genic effects. 

This year researchers also considered other human-
caused drivers of extreme events beyond the usual 
radiative drivers. For example, flooding in the Canadian 
prairies was found to be more likely because of human 
land-use changes that affect drainage mechanisms. Simi-
larly, the Jakarta floods may have been compounded by 
land-use change via urban development and associated 
land subsidence. These types of mechanical factors re-
emphasize the various pathways beyond climate change 
by which human activity can increase regional risk of 
extreme events. 



S83DECEMBER 2015AMERICAN METEOROLOGICAL SOCIETY |

17. THE 2014 DROUGHT IN THE HORN OF AFRICA: 
ATTRIBUTION OF METEOROLOGICAL DRIVERS

t. R. MaRtHeWS, F. e. l. otto, d. MitcHell, S. J. dadSon, and R. g. JoneS

Introduction. Drought has always been a natural part 
of climatic variability in Africa (Masih et al. 2014), 
but the Greater Horn of Africa region (GHoA; taken 
as the area east of the Nile River between Khartoum, 
Sudan, and Mombasa, Kenya, see Fig. 17.1) is espe-
cially vulnerable to the impacts of drought because 
of a unique combination of several adverse factors. 
Despite favorable soils, the GHoA has long experi-
enced widespread poverty and high levels of food 
insecurity (Global Hunger Index 2013; FEWS NET 
2015). Political instability and the high dependence of 
GHoA’s population on rain-fed agriculture exacerbate 
the impacts of droughts (Love 2009; Masih et al. 2014).

Most areas of the GHoA experience two rainy 
seasons: the “long rains” during March–June as the 
intertropical convergence zone (ITCZ) crosses the 
equator from south to north and the “short rains” 
during October–December as the ITCZ returns to the 
south (Yang et al. 2015). The long rains have received 
much recent attention, first, because identifying their 
large-scale climate drivers has proved challenging 
(Lyon and DeWitt 2012; Funk et al. 2014; Yang et al. 
2014) and second, because since 1999 the long rains 
have been decreasing across the region (Lyon and De-
Witt 2012; Lyon 2014), with disastrous consequences 
for local populations (Boulter et al. 2013; Masih et 
al. 2014).

The focus of this study is the 2014 drought in 
GHoA. In late 2013, the short rains failed almost 

completely in Kenya, Somalia, and southern Ethiopia, 
leading to an abnormally-dry growing season from 
January to March 2014, followed by a widespread 
drought in many agricultural areas of the GHoA 
because of much-reduced long rains during March 
to June (FAO 2014; ECHO 2014; see also Hoell and 
Funk 2014). A similar failure of both rainy seasons 
occurred in 2010–11, causing widespread crop failures 
in 2011 and led, as a result of political instability, to 
famine in Somalia (UNOCHA 2011; Lott et al. 2013; 
Coghlan et al. 2014; Nicholson 2014). Because climate-
related extremes have been the dominant trigger of 
natural disasters in the GHoA (Omondi et al. 2014), 
understanding these extreme climatic events and 
their impacts is critically important.

The decrease of the long rains during March to 
June has been the dominant driver of the increased 
frequency and severity of droughts in the GHoA in 
recent years (Yang et al. 2015), but how much of this 
decrease is part of natural variability and how much is 
attributable to anthropogenic climate change? Events 
such as drought usually occur as a result of a combina-
tion of factors (Trenberth 2012), only some of which 
may be related to recent human activities. Therefore, 
attribution studies of extreme climatic events are im-
portant, but such studies remain rare for Africa partly 
because of shorter instrumental records that limit our 
ability to assign causation with certainty (Tierney et 
al. 2013; Stott et al. 2014). The attribution issue gains 
added urgency because extreme weather events such 
as heatwaves, floods, and droughts can be associated 
with high levels of loss and damage to human society 
(James et al. 2014; Stott et al. 2014). In this study we 
ask whether human-induced climate change played a 
role in the meteorology of the 2014 East African long 
rains season that could have contributed to the 2014 
drought in the GHoA.

Methods. We use probabilistic event attribution (PEA) 
techniques (e.g., Allen 2003; Stott et al. 2014), which 

Ensemble modelling of the East African 2014 long rains season suggests no anthropogenic influence on the 
likelihood of low rainfall but clear signals in other drivers of drought.

AFFILIATIONS: MaRtHeWS—School of Geography and the 
Environment, University of Oxford, Oxford, United Kingdom; 
otto—Environmental Change Institute, University of Oxford, 
Oxford, United Kingdom; dadSon—School of Geography and the 
Environment, University of Oxford, Oxford, United Kingdom; 
JoneS—School of Geography and the Environment, University of 
Oxford, Oxford, United Kingdom and Met Office Hadley Centre, 
Exeter, United Kingdom
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involve taking an ensemble approach to 
the problem of estimating the response 
of the climate system to external forc-
ing (Massey et al. 2015). Two sets of 
simulations are employed: one factual 
set generated from multiple realizations 
of the event in question using observed 
climate forcings and one counterfactual 
set based on the “world that might have 
been without higher greenhouse gas 
emissions”. These counterfactual simula-
tions are the result of running the same 
climate model but with anthropogenic 
greenhouse gas forcings removed (Otto 
et al. 2015). Comparisons between these 
two ensembles allow us to quantify the 
change in extreme event probability that 
is attributable to anthropogenic as op-
posed to natural drivers (Pall et al. 2011).

Large ensembles of model simula-
tions are necessary for PEA to under-
stand extreme or rare events (Allen 
2003). Our ensemble sets are simulated 
using HadRM3P, a regional climate 
model, embedded in the Hadley Centre 
atmosphere-only general circulation 
model (HadAM3P) with perturbed ini-
tial conditions and observed sea surface 
temperatures (SSTs), derived from the 
operational sea surface temperature and 
sea ice analysis (OSTIA; Stark et al. 2007). 
These simulations were run using the vol-
unteer computing framework weather@
home (Massey et al. 2015).

We used a 0.44° resolution simulation 
domain (~50 km at midlatitudes) cover-
ing Africa from 14.3°S to 46.0°N and 
from 25.0°W to 62.6°E: a much greater 
area than the GHoA (Fig. 17.1) to ensure 
that edge effects were negligible during 
these simulations. Data from factual and 
counterfactual simulations form the basis 
of the subsequent analysis. Statistics are 
calculated for an area comprising south 
Ethiopia, north Kenya, and south-west 
Somalia, the areas where precipitation 
deficit, hydrological drought, and food 
insecurity overlapped during the 2014 
Horn of Africa drought event (FAO 2014; 
hereafter the “center of drought impact”, 
CDI; Fig. 17.1).

Fig. 17.1. Long rains (Mar–Jun) total precipitation (mm) for 2014 as 
simulated from the weather@home factual experiment, showing 
the two ensemble members that presented the (a) driest and (b) 
wettest seasonal means over the CDI. For comparison, estimates 
of the observed precipitation for the same season are shown from 
(c) the TAMSAT (e.g., Tarnavsky et al. 2014; n.b. Yemen and oce-
anic points are not included in TAMSAT) and (d) TRMM datasets 
(e.g., Dinku et al. 2007) and (e) the anomaly between the mean 
factual ensemble and TAMSAT (green shows areas where the 
model overestimates precipitation, purple underestimations). 
The CDI during 2014 is boxed [Lake Turkana, Kenya (36.00°E), to 
the Juba River, Somalia (42.28°E), and from Wajir, Kenya (1.75°N), 
to Imi, Ethiopia (6.46°N)], coinciding approximately with the Tur-
kana Basin/Southeastern Horn region of Liebmann et al. (2014).
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Results. With the focus of 
our study on simulations of 
the 2014 East African long 
rains season (Fig. 17.1), we 
compared the weather@
home simulations of the sea-
sonal average rainfall in rep-
resentative members of the 
factual ensemble with two 
estimates of the observed 
rainfall. Initial ly we ex-
amined the distribution of 
simulated average March to 
June precipitation over the 
CDI (Fig. 17.1) and divided 
this into 20 bins, from each 
of which an equal number 
of representative members 
was chosen (20 bins was an 
optimal number in order to 
allow adequate sampling of 
the tail of low-precipitation 
simulations). The general 
spatial pattern of observed 
rainfall estimates for the 
2014 March to June sea-
son is correctly returned 
by the model simulations 
(Fig. 17.1). Specifically, the 
spatial mean long rains total 
precipitation for the CDI av-
eraged across the ensemble 
was 155 mm (ranging from 
94 mm to 195 mm for the 
minimal and maximal en-
sembles shown in Fig. 17.1) 
compared with TAMSAT 
(e.g., Tarnavsky et al. 2014) 
and TRMM (e.g., Dinku et 
al. 2007) data averages for 
2014 of 169 mm and 201 
mm, respectively. In relation 
to available data, 2014 was in the driest 33% of years 
recorded since 1983 (TAMSAT data, Supplemental 
Fig. S17.1) and its importance as an extreme drought 
event is not in question.

We focus on surface (1.5-m) meteorological 
variables that are relevant to the vegetation and soil 
moisture state of the land surface and therefore to 
indicators of drought. These are precipitation, which 
directly influences soil moisture, along with tempera-
ture, downward shortwave and longwave radiation, 

and specific humidity, which in turn affect potential 
evapotranspiration and other variables relevant to 
vegetation productivity. In Fig. 17.2 we compare simu-
lations of these variables in the factual climate with 
the corresponding counterfactual simulations aver-
aged over the CDI. These results show clear increases 
in the occurrence frequency of higher temperature 
and humidity at the surface (Figs. 17.2a,b), along with 
a slightly lower shortwave input but a higher longwave 
flux at the surface (Figs. 17.2c,d). These differences 

Fig. 17.2. Return-time periods (years) from the regional model (HadRM3P) 
showing the change in occurrence frequency between simulations of the factual 
(red) and counterfactual (blue) ensembles for extreme values of a selection of 
climate model outputs (a) surface temperature (K), (b) specific humidity (g 
g−1), (c) downward shortwave radiation received at the surface (W m−2), (d) 
downward longwave radiation (W m−2) and (e) total precipitation (mm). Means 
and 5%–95% confidence intervals are calculated from bootstrapping for each 
threshold value across all ensembles in the set (for details see Otto et al. 2015).
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are attributable to human-induced changes in green-
house gas concentrations. Nonetheless, there is no 
corresponding change in precipitation (Fig. 17.2e).

Discussion. As large-scale teleconnections play a sig-
nificant role in the climate of the GHoA, for example, 
robust correlations have been found linking the East 
African long rains with SST oscillations such as 
the Indian Ocean dipole and the El Niño southern 
oscillation (ENSO; e.g., Funk et al. 2014; Lanckriet 
et al. 2014; Lyon 2014; Liebmann et al. 2014; Yang et 
al. 2014, 2015), it is important to note that both our 
factual and counterfactual simulation ensembles use 
SSTs with essentially the same oscillations and hence 
the same large-scale teleconnections. With the SSTs 
used in the counterfactual simulation being formed 
from observed values with estimated large-scale 
anthropogenic SST signals subtracted, the SST gra-
dients, and their temporal evolution, are very similar 
to the observed values. Thus the same teleconnection 
signature will be present in both sets of simulations 
and by comparing these we are able to assess the ad-
ditional effect of the anthropogenic influences (Otto 
et al. 2015).

Our results suggest that while anthropogenic 
increases in greenhouse gas concentrations and as-
sociated warming of sea surface temperatures did not 
increase the likelihood of reduced precipitation in the 
2014 East African long rains season, human influ-
ences did result in higher temperatures and increased 
net incoming radiation at the surface over the region 
most affected by the drought. Conversely, Lott et al. 
(2013) did find that the failure of the 2011 long rains 
was more probable following anthropogenic climate 
change, indicating that climatic conditions for the 
2014 drought were not identical to the 2011 drought 
in the same area. The drivers of the East African long 
rains are not yet sufficiently understood (Nicholson 
2014; Yang et al. 2014, 2015) so there are many possible 
reasons why anthropogenic change was less signifi-
cant in terms of climatological drought in 2014 than 
2011: for example, 2014 was globally a warmer year 
than 2011 which perhaps overwhelmed a relatively 
small anthropogenic signal.

These findings do not constitute a clear attribu-
tion of the 2014 climatological drought to human 
inf luences. However, simulating the causal chain 
from precipitation deficit to hydrological or agricul-
tural drought and other impacts is nontrivial and 
involves many processes that are themselves poorly 
known at high resolution (Prudhomme et al. 2014). 
Increased temperature and net incoming radiation at 

the surface both enhance evaporation and, therefore, 
the conditions for either or both hydrological or ag-
ricultural drought so we suggest that the occurrence 
of climatological drought and drought impacts may 
be decoupled in this region. Our results show that an-
thropogenic influence could well have contributed to 
drought conditions during the East African long rains 
but also that more comprehensive studies are required 
before more definitive statements can be made.
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Table 34.1. ANTHROPOGENIC INFLUENCE

ON EVENT STRENGTH † ON EVENT LIKELIHOOD †† Total 
Number 

of 
PapersINCREASE DECREASE NOT FOUND OR UNCERTAIN INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Australia (Ch. 31)

Europe (Ch.13)

S. Korea (Ch. 19)

Australia, Adelaide & Melbourne 
(Ch. 29)

Australia, Brisbane (Ch.28)
Heat

Argentina (Ch. 9)

Australia (Ch. 30, Ch. 31)

Australia, Adelaide (Ch. 29)

Australia, Brisbane (Ch. 28)

Europe (Ch. 13)

S. Korea (Ch. 19)

China (Ch. 22)

Melbourne, Australia (Ch. 29) 7

Cold Upper Midwest (Ch.3) Cold Upper Midwest (Ch.3) 1

Winter 
 Storms and 

Snow

Eastern U.S. (Ch. 4)

N. America (Ch. 6)

N. Atlantic (Ch. 7)

Winter 
 Storms and 

Snow
Nepal (Ch. 18)

Eastern U.S.(Ch. 4)

N. America (Ch. 6)

N. Atlantic (Ch. 7)

4

Heavy 
Precipitation Canada** (Ch. 5)

Jakarta**** (Ch. 26)

United Kingdom*** (Ch. 10)

New Zealand (Ch. 27)

Heavy 
Precipitation

Canada** (Ch. 5)

New Zealand (Ch. 27)

Jakarta**** (Ch. 26)

United Kingdom*** (Ch. 10)

S. France (Ch. 12)

5

Drought

E. Africa (Ch. 16)

E. Africa* (Ch. 17)

S. Levant (Ch. 14)

Middle East and S.W. Asia 
(Ch. 15)

N.E. Asia (Ch. 21)

Singapore (Ch. 25)

Drought
E. Africa (Ch. 16)

S. Levant (Ch. 14)

Middle East and S.W. Asia (Ch. 15)

E. Africa* (Ch. 17)

N.E. Asia (Ch. 21)

S. E. Brazil (Ch. 8)

Singapore (Ch. 25)

7

Tropical 
Cyclones

Gonzalo (Ch. 11)

W. Pacific (Ch. 24)
Tropical 
Cyclones Hawaii (Ch. 23)

Gonzalo (Ch. 11)

W. Pacific (Ch. 24)
3

Wildfires California (Ch. 2) Wildfires California (Ch. 2) 1

Sea Surface 
Temperature

W. Tropical & N.E. Pacific (Ch. 20)

N.W. Atlantic & N.E. Pacific (Ch. 13)
Sea Surface 

Temperature

W. Tropical & N.E. Pacific 
(Ch. 20)

N.W. Atlantic & N.E. Pacific 
(Ch. 13)

2

Sea Level 
Pressure S. Australia (Ch. 32)

Sea Level 
Pressure S. Australia (Ch. 32) 1

Sea Ice 
Extent Antarctica (Ch. 33)

Sea Ice 
Extent Antarctica (Ch. 33) 1

TOTAL 32

† Papers that did not investigate strength are not listed.

†† Papers that did not investigate likelihood are not listed.
* No influence on the likelihood of low rainfall, but human influences did result in higher temperatures and increased net incoming radiation at the 

surface over the region most affected by the drought.
** An increase in spring rainfall as well as extensive artificial pond drainage increased the risk of more frequent severe floods from the enhanced 
rainfall.
*** Evidence for human influence was found for greater risk of UK extreme rainfall during winter 2013/14 with time scales of 10 days
**** The study of Jakarta rainfall event of 2014 found a statistically significant increase in the probability of such rains over the last 115 years, though 

the study did not establish a cause.
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Table 34.1. ANTHROPOGENIC INFLUENCE

ON EVENT STRENGTH † ON EVENT LIKELIHOOD †† Total 
Number 

of 
PapersINCREASE DECREASE NOT FOUND OR UNCERTAIN INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Australia (Ch. 31)

Europe (Ch.13)

S. Korea (Ch. 19)

Australia, Adelaide & Melbourne 
(Ch. 29)

Australia, Brisbane (Ch.28)
Heat

Argentina (Ch. 9)

Australia (Ch. 30, Ch. 31)

Australia, Adelaide (Ch. 29)

Australia, Brisbane (Ch. 28)

Europe (Ch. 13)

S. Korea (Ch. 19)

China (Ch. 22)

Melbourne, Australia (Ch. 29) 7

Cold Upper Midwest (Ch.3) Cold Upper Midwest (Ch.3) 1

Winter 
 Storms and 

Snow

Eastern U.S. (Ch. 4)

N. America (Ch. 6)

N. Atlantic (Ch. 7)

Winter 
 Storms and 

Snow
Nepal (Ch. 18)

Eastern U.S.(Ch. 4)

N. America (Ch. 6)

N. Atlantic (Ch. 7)

4

Heavy 
Precipitation Canada** (Ch. 5)

Jakarta**** (Ch. 26)

United Kingdom*** (Ch. 10)

New Zealand (Ch. 27)

Heavy 
Precipitation

Canada** (Ch. 5)

New Zealand (Ch. 27)

Jakarta**** (Ch. 26)

United Kingdom*** (Ch. 10)

S. France (Ch. 12)

5

Drought

E. Africa (Ch. 16)

E. Africa* (Ch. 17)

S. Levant (Ch. 14)

Middle East and S.W. Asia 
(Ch. 15)

N.E. Asia (Ch. 21)

Singapore (Ch. 25)

Drought
E. Africa (Ch. 16)

S. Levant (Ch. 14)

Middle East and S.W. Asia (Ch. 15)

E. Africa* (Ch. 17)

N.E. Asia (Ch. 21)

S. E. Brazil (Ch. 8)

Singapore (Ch. 25)

7

Tropical 
Cyclones

Gonzalo (Ch. 11)

W. Pacific (Ch. 24)
Tropical 
Cyclones Hawaii (Ch. 23)

Gonzalo (Ch. 11)

W. Pacific (Ch. 24)
3

Wildfires California (Ch. 2) Wildfires California (Ch. 2) 1

Sea Surface 
Temperature

W. Tropical & N.E. Pacific (Ch. 20)

N.W. Atlantic & N.E. Pacific (Ch. 13)
Sea Surface 

Temperature

W. Tropical & N.E. Pacific 
(Ch. 20)

N.W. Atlantic & N.E. Pacific 
(Ch. 13)

2

Sea Level 
Pressure S. Australia (Ch. 32)

Sea Level 
Pressure S. Australia (Ch. 32) 1

Sea Ice 
Extent Antarctica (Ch. 33)

Sea Ice 
Extent Antarctica (Ch. 33) 1

TOTAL 32

† Papers that did not investigate strength are not listed.

†† Papers that did not investigate likelihood are not listed.
* No influence on the likelihood of low rainfall, but human influences did result in higher temperatures and increased net incoming radiation at the 

surface over the region most affected by the drought.
** An increase in spring rainfall as well as extensive artificial pond drainage increased the risk of more frequent severe floods from the enhanced 
rainfall.
*** Evidence for human influence was found for greater risk of UK extreme rainfall during winter 2013/14 with time scales of 10 days
**** The study of Jakarta rainfall event of 2014 found a statistically significant increase in the probability of such rains over the last 115 years, though 

the study did not establish a cause.

† Papers that did not investigate strength are not listed.

†† Papers that did not investigate likelihood are not listed.
* No influence on the likelihood of low rainfall, but human influences did result in higher temperatures and increased net incoming radiation at the 

surface over the region most affected by the drought.
** An increase in spring rainfall as well as extensive artificial pond drainage increased the risk of more frequent severe floods from the enhanced 
rainfall.
*** Evidence for human influence was found for greater risk of UK extreme rainfall during winter 2013/14 with time scales of 10 days
**** The study of Jakarta rainfall event of 2014 found a statistically significant increase in the probability of such rains over the last 115 years, though 

the study did not establish a cause.




