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ABSTRACT

Simulations from a regional climatemodel (RCM) as part of a superensemble experiment were compared with

observations of surfacemeteorological variables over the western United States. The RCM is the Hadley Centre

Regional Climate Model, version 3, with improved physics parameterizations (HadRM3P) run at 25-km reso-

lution and nested within the Hadley Centre Atmosphere Model, version 3 (HadAM3P). Overall, the means of

seasonal temperaturewerewell represented in the simulations; 95%of grid points werewithin 2.78, 2.48, and 3.68C
of observations in winter, spring, and summer, respectively. Themodel was too warm over most of the domain in

summer except central California and southern Nevada. HadRM3P produced more extreme temperatures than

observed. The overall magnitude and spatial pattern of precipitation were well characterized, though HadRM3P

exaggerated the orographic enhancement along the coastal mountains, Cascade Range, and Sierra Nevada.

HadRM3P produced warm/dry northwest, cool/wet southwest U.S. patterns associated with El Niño. However,

there were notable differences, including the locations of the transition from warm (dry) to cool (wet) in the

anomaly fields when compared with observations, though there was disagreement among observations.

HadRM3P simulated the observed spatial pattern ofmean annual temperaturemore faithfully than any of the

RCM–GCM pairings in the North American Regional Climate Change Assessment Program (NARCCAP).

Errors inmean annual precipitation fromHadRM3P fell within the range of errors of theNARCCAPmodels.

Last, this paper provided examples of the size of an ensemble required to detect changes at the local level and

demonstrated the effect of parameter perturbation on regional precipitation.

1. Introduction

Although global climate models (GCMs) are im-

portant tools for investigating climate variability and

change on large scales, their coarse spatial resolution

to date (typically 100–300 km) inhibits their ability to

represent the interactions of synoptic-scale weather

systems with local terrain and mesoscale processes.

These interactions not only determine the mesoscale

detail of climate patterns and variability but may also

profoundly influence the magnitude of variability

and the response to forced change at and above the

mesoscale. Given current technology, the standard

approach to incorporating mesoscale meteorology

over a region is to nest a higher-resolution climate

model [known as a regional climate model (RCM)]

within a GCM. RCMs, with their increased resolution

of local terrain, are able to represent finescale features
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such as land–sea breeze, rain shadows, and windstorms

(Leung et al. 2003a,b).

The western United States is an excellent test bed

for investigating climate patterns emerging from inter-

actions between atmospheric circulation and terrain

because of the strong topographic gradients and wide

range of climate zones over a relatively small area of the

planet. In fact, the first use of a nested RCMwas focused

on the western United States (Dickinson et al. 1989).

Since then there have been numerous studies simulating

climate in the western United States using RCMs (e.g.,

Duffy et al. 2006; Salathé et al. 2008, 2010; Zhang et al.

2009; Dulière et al. 2011). Duffy et al. (2006) used four

RCM–GCM combinations, run at 36–60-km spatial

resolution, to simulate present and future climates to

examine the intermodel variability of the response to

increased atmospheric greenhouse gases (GHGs).

Salathé et al. (2008) nested one 15-km-resolution RCM

in aGCM to examinemesoscale feedbacks and localized

responses to increased GHGs. By performing two re-

gional climate simulations using one RCM driven by

two different GCMs, Salathé et al. (2010) showed that

mesoscale simulations produced regional changes

substantially different from the GCMs or statistical

downscaling.

In addition to the limitations associated with spatial

resolution, modeling studies are subject to challenges

associated with small sample sizes. Most studies using

RCMs, and also many using GCMs, have performed a

single simulation, which forms the basis for comparison

with observations or for comparisons between simula-

tions with differing forcings and/or boundary conditions.

The disadvantage of using a single simulation is that it

certainly undersamples the space of possible climate

states, and while some uncertainty can be reduced by

averaging over time (e.g., 30 years), even such averages

can be substantially different between simulations

whose only difference is a small perturbation to initial

conditions (e.g., Deser et al. 2014). This problem is even

more acute when comparing extremes. Adequately

large ensembles of simulations are needed for de-

termining the statistical properties of the model more

accurately. For example, a 40-member ensemble gen-

erated with the National Center for Atmospheric Re-

search (NCAR) Community Climate System Model,

version 3 (CCSM3), has been used by many studies to

investigate uncertainty due to internal variability,

signal-to-noise ratio,1 minimum ensemble size required

to detect a forced signal, and time of emergence of the

forced signals (Deser et al. 2012a,b; Oshima et al. 2012;

Kang et al. 2013; Hu and Deser 2013; Wettstein and

Deser 2014; Wallace et al. 2015). These studies imply

that even 40 members are sometimes insufficient to

separate signal from noise, depending on the signal

being sought, the domain, and the time of emergence

of the forced signal. Several coordinated ensemble

modeling experiments have been conducted to better

quantify uncertainty on a regional level, such as the

Prediction of Regional Scenarios andUncertainties for

Defining European Climate Change Risks and Effects

(PRUDENCE; Christensen and Christensen 2007).

Also, the North American Regional Climate Change

Assessment Program (NARCCAP; 50-km resolution;

Mearns et al. 2009, 2012) was implemented to explore

the separate and combined uncertainties in regional

climate change simulations that result from the use of

different atmosphere–ocean general circulation models

(AOGCMs) to provide boundary conditions for different

RCMs.

A third challenge to modeling regional climate con-

cerns is the dependence of the model simulation on

physical parameterizations. Processes that occur at scales

finer than the resolution of the climate model are neces-

sarily left unresolved. These processes must be simulated

using empirical representations of their aggregated be-

havior at resolved scales as functions of the resolved-

scale variables such as temperature, humidity, wind,

and pressure. While observational studies are usually

used to set values for parameters, parameterizations

could still introduce uncertainty into the modeling

process when there is a range of parameter values that

are physically possible. The uncertainties in the values

of the parameters lead to errors in the simulated cli-

mate and uncertainty in the response to forcing.

We designed a study to address three challenges:

1) achieving relatively high spatial resolution to re-

produce important features of climate in the western

United States, 2) accounting for the internal variations

associated with initial conditions, and 3) accounting for

variations in simulated climate associated with param-

eter choices. To address the first challenge, we nested

the Hadley Centre Regional Climate Model, version 3,

with improved physics parameterizations (HadRM3P;

Jones et al. 2004) at 25-km resolution within the Hadley

Centre Atmosphere Model, version 3 (HadAM3P),

which is a higher-resolution (1.8758 3 1.258) version of

the atmospheric component ofHadCM3, the atmosphere–

ocean coupled general circulation model (Gordon et al.

2000). To address the second and third challenges, we

generated a ‘‘superensemble’’ of simulations (a total of

over 130 000 model years) for the historical time period

1960–2009 using the HadISST, version 1.1, dataset

(Rayner et al. 2003) to specify the SSTs and sea ice1Defined here as delta mean divided by uncertainty.
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fractions for each month. The overall experiment, some

initial results, and the strengths and weaknesses of our

approach in comparison with other studies are discussed

inMote et al. (2015), with further details of themodeling

given in Massey et al. (2015).

In the first phase of this project, two studies (Zhang et al.

2009; Dulière et al. 2011) used the HadRM3P at 25-km

resolution over the western United States, just as in this

paper. They compared HadRM3P driven by reanalysis

data compared with station data and with simulations

using the Weather Research and Forecasting (WRF)

Model at 12- and 36-km resolution for the period 2003–07;

these simulations were run in-house. Simulations for sur-

face temperature in HadRM3P were about as skillful as

for WRF at both resolutions, while for precipitation, the

12-km WRF simulation was better than the 36-km WRF

and 25-km HadRM3P. The next paper (Mote et al. 2015)

described the superensemble but did not thoroughly

evaluate the model, a task left to this paper.

As discussed in more detail by Massey et al. (2015),

our experiment covers one of six regions of the globe

using the weather@home system to simulate regional

climate. Weather@home uses a volunteer computing

network (http://www.climateprediction.net; Allen 1999)

to generate large ensembles of HadRM3P driven by

HadAM3P. To generate the superensemble, we varied

initial conditions and parameter values as described in

section 2b below.

The primary purpose of this paper is to compare the

climate as simulated by the superensemble against the

observed climate over the western United States. We

note that errors in the RCM results may be due to

problems in the RCM itself or may reflect errors in the

lateral boundary conditions supplied by the GCM.

Thus, in our analysis of simulated historical climate,

we evaluate not only the RCM alone but rather the

coupled RCM–GCM model. We evaluate, primarily,

the RCM’s skill in reproducing spatial details of the

regional climate. Moreover, given the importance of

teleconnections between El Niño–Southern Oscillation

(ENSO) and seasonal climate over the western United

States (e.g., Ropelewski andHalpert 1986;Wallace et al.

1992; Gershunov 1998; Cayan et al. 1999), we also

evaluate how well HadRM3P–HadAM3P reproduces

the regional teleconnections to ENSO.Our evaluation is

mainly focused on temperature and precipitation. Net

downward solar radiation is also examined here, mainly

as a diagnostic for understanding errors in temperature.

We describe the regional simulations and datasets used

in this study in section 2. Section 3 examines climato-

logical statistics such as seasonal mean states, spatial

correlation, and temperature/precipitation–topography

relationships, while section 4 discusses simulated ENSO

teleconnections in the western United States. An assess-

ment of added value from a high-resolution super-

ensemble is provided in section 5, and conclusions are

given in section 6.

2. Datasets and simulations

a. Data

We compared simulations to six datasets of observed,

or observation-based, meteorological variables. The

first dataset was monthly mean temperature from

the U.S. Historical Climatology Network (USHCN)

monthly data, version 2 (Menne et al. 2009). The fully

adjusted temperature series were used for stations in

Oregon, Idaho, Washington, California, and Nevada.

Stations that moved or have joined records were ex-

cluded, leaving a total of 147 stations. The USHCN

temperature data were compared with the closest model

grid point from the regional model. Differences in ele-

vation are expected to influence the temperature com-

parisons because elevations of stations may be as much

as 500m above or below the elevation of the model grid

cell, so we applied an elevation adjustment to the sim-

ulated temperature for this comparison. We used simple

linear regression to estimate how much of the differ-

ences in temperature could be explained by the differ-

ences in elevation alone. We regressed the errors

(calculated as simulated minus observed temperature)

against the differences in elevation of the grid cells and

the stations. The predictions from the linear regression

were then subtracted from the simulated temperature to

achieve the elevation-adjusted temperatures.

The second dataset, providing monthly mean maxi-

mum, minimum, and average temperature, precipitation

rate, and net downward solar radiation, was the 32-km

resolution National Centers for Environmental Pre-

diction (NCEP) North American Regional Reanalysis

(NARR; Mesinger et al. 2006). NARR begins in 1979

and thus does not span our regional model simula-

tions, which begin in 1960. When comparing tem-

perature from NARR with HadRM3P, we used a

standard lapse rate of 4.58Ckm21 for the Cascade Range

(i.e., Cascades) and Sierra Nevada and 6.58C km21

elsewhere to account for differences in elevation

between the datasets.

The third dataset consisted of monthly means of near-

surface daily maximum and minimum temperature and

precipitation rate from the Parameter-Elevation Re-

gressions on Independent Slopes Model (PRISM; 2.503
2.50, Daly et al. 2008).

The fourth dataset, providing the monthly gridded

(0.58 3 0.58) maximum and minimum temperature and
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precipitation rate, was fromClimate ResearchUnit time

series (CRU TS), version 3.10 (Harris et al. 2014).

The fifth dataset was the Climate Prediction Cen-

ter (CPC) 0.258 3 0.258 daily U.S. unified gauge-

based analysis of precipitation (CPC U.S. unified

precipitation data provided by the NOAA/OAR/

ESRL Physical Sciences Division (PSD) from their

website at http://www.esrl.noaa.gov/psd/data/gridded/

data.unified.daily.conus.html).

The sixth dataset was the Global Precipitation Cli-

matology Centre (GPCC) 0.58 3 0.58 monthly pre-

cipitation dataset calculated from global station data

(GPCC Precipitation data provided by the NOAA/

OAR/ESRL PSD from their website at http://www.esrl.

noaa.gov/psd/data/gridded/data.gpcc.html).

NARRdatasets are reanalysis products, which aremodel

simulations, and contain features of both the constraining

observations and the underlyingmodel. Thus, NARR itself

mayproduce apatternof precipitation that is different from

observations and therefore may not be a fair test for an-

other model; consequently, in this paper, we used PRISM,

CRU TS, CPC, and GPCC precipitation as supplementary

data sources against which to compare our simulations.

We also examined simulations from 11 RCM–GCM

combinations (Table 1) from NARCCAP (Mearns et al.

2014).Thehistorical simulations span theyears 1969 to 1999.

All gridded datasets were regridded to a common

0.258 3 0.258 grid using bilinear interpolation.

b. Simulations

The HadRM3P domain covers the western United

States, a portion of Canada, and the northwestern Pa-

cific Ocean. This analysis, however, focused on the

western United States west of 1108W longitude (see

Fig. 1) largely because one of the primary observational

datasets we used covers the United States only. Details

of the model configuration can be found in Massey et al.

(2015) but with the western U.S. region replacing the Eu-

ropean region. Briefly, HadAM3P runs first for one full

model day, providing the lateral boundary conditions to

HadRM3P, which also runs for one full model day; there is

no feedback from HadRM3P to HadAM3P. HadRM3P

defines a four-point buffer zone (100km) around the pe-

rimeter of the region, which we exclude from our analysis.

The main variables comprising the lateral boundary condi-

tions are relaxed across the buffer zone to values temporally

interpolated from 6-hourly output from HadAM3P.

Each simulation is for a single year, but simulations can

be connected tomake a longer time series. Initially, a pool

of 1-year ‘‘work units’’ are created at 5-yearly intervals,

each with the same starting conditions of the state of the

model after nine years (12 January 1960–30 November

1968) of integration under observed climate forcing.

These work units are distributed to client computers, and

the results from the integration are returned, along with

the final state of the model. This final state is then in-

corporated into a new work unit describing the next year

of the climate scenario, using this final state as the starting

condition. This process is repeated for the subsequent

integrations, enabling strings of several-year runs to be

built from the single-year runs (Massey et al. 2015).

Two experiments were run for the years 1960–2009:

1) a perturbed initial conditions experiment with stan-

dard, or default, model parameters [standard physics

(SP)] and 2) a perturbed physics (PP) experiment. In the

SP experiment, the initial condition perturbation is

drawn from a large set of possible perturbations defined

as deltas in potential temperature and is calculated as a

TABLE 1. RCM–GCM combinations from NARCCAP used in

this paper. (ECP2 is Experimental Climate Prediction Center

Regional Spectral Model version 2; for additional acronym ex-

pansions, see http://www.ametsoc.org/PubsAcronymList.)

RCM Driving GCM

CRCM CCSM

CRCM CGCM3

ECP2 GFDL

HadRM3 GFDL

HadRM3 HadCM3

MM5–Iowa State

University (MM5I)

CCSM

MM5I HadCM3

RegCM3 CGCM3

RegCM3 GFDL

WRF–Grell (WRFG) CCSM

WRFG CGCM3

FIG. 1. Approximate domain and elevation (m) of terrain used in

this research.
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fully 3D field by first taking 348 next-day differences

from a 1-yr-long integration of the GCM, with a scaling

function applied in the vertical to ensure that there is no

perturbation at the top of the atmosphere, and then

applying five global scaling factors to the perturbations

to generate a set of 1740 initial condition perturbations

[for details seeMassey et al. (2015)]. In the results of the

SP experiment presented below (sections 3 through 5

and the first half of section 6), 20–500 runs per year, each

with a unique set of initial condition, were used for the

years 1979–98, depending on availability, and 500 runs

were used per year for 1999–2009.

The motivation behind the PP experiment is that

there may be many variants of the climate model that

are as good as if not ‘‘better’’ than the standard version,

and their response to a given climate forcing may be

different from the standard version. Our ultimate goal

(beyond the scope of this paper) is to cast a wide net and

explore parameter space to find regions of parameter

space where the model performs well and to assess the

implications for climate response to changes in GHGs.

In the historical PP experiment, the perturbations of

12 parameters appear to have been conservative and did

not notably alter the probability distributions of regional

temperature and precipitation. Therefore, we ran a

subsequent PP experiment where we isolated and per-

turbed only three parameters (listed in Table 2) while

keeping the rest of the parameters at their respective

default value. The three parameters were chosen be-

cause they were shown by previous studies to have

bearing on the vertical moisture profile and energy

balance. Findings of previous studies (Stainforth et al.

2005; Sanderson and Piani 2007; Knight et al. 2007;

Sanderson et al. 2008a,b) suggested the dominant in-

fluence of the entrainment coefficient (ENTCOEF) in

establishing different relative humidity profiles that lead

to different climate sensitivities. Other investigations

(Grabowski 2000; Wu 2002; Sanderson and Piani 2007;

Sanderson et al. 2008a,b) indicated that a low ice fall

speed (VF1) would lead to a warm, moist, cloudy at-

mospheric profile with less precipitation. Sanderson

et al. (2010) showed that the accretion constant (CT)

affects water vapor, cloud, and lapse-rate feedbacks.

The range of parameter values was increased over the

previous PP experiment based on previous studies (e.g.,

Stainforth et al. 2005; Sanderson et al. 2008a,b) done on

the predecessor ensemble of weather@home; Latin

hypercube sampling was used to create 200 distinct

parameter sets, with the same 15 initial condition

perturbations applied to each parameter set. Results

from the 3000 runs were used to identify parameter

combinations that lead to warmer and drier, or cooler

and wetter, conditions. Then a new set of runs was sent

out with three parameter sets P1, P2, and P3—P1 is the

default setting and P2 and P3 corresponding to warmer

and drier and cooler and wetter conditions, respectively.

We applied 1000 initial condition perturbations to each

parameter set. By the time of this manuscript, an en-

semble of 110 simulations for each parameter set had

been completed for year 2011; some initial results of this

PP experiment were presented here.

3. Climatological mean statistics

To establish how well the regional climate simula-

tions reproduce the observed climate of the western

United States, first we compared seasonal mean simu-

lations to gridded observations averaged for the period

December 1979 through November 2009, in a similar

manner to Leung et al. (2003a,b). We attempt, through

averaging over a period of 31 years, to reduce the in-

ternal atmospheric variability about the mean state so

that differences between the simulations and gridded

observations are primarily the result of model de-

ficiencies and differences in grid resolutions. We sepa-

rated our analysis into winter [December–February

(DJF)], spring [March–May (MAM)], and summer

[June–August (JJA)]. For brevity we omit autumn, al-

though we have analyzed autumn results as well; adding

panels for autumn would overcrowd the figures without

adding substantially meaningful information, and be-

sides, few impacts of climate change are connected with

changes in autumn.

The spatial patterns of seasonal average temperature

(tavg) for HadRM3P were very similar to those of

PRISM and NARR (Fig. 2). Overall, temperature was

TABLE 2. Perturbed parameters in the new perturbed physics experiment used in this analysis. The upper and lower bounds for the values

of the parameters were specified from expert solicitation.

Parameters Description/process affected Lower/upper bound

ENTCOEF Scales rate of mixing between environmental (clear) air

and convective plume (cloud)

[0.6, 9]

CT How quickly cloud droplets convert to rain [0.5, 4] 3 1024

VF1 Ice fall speed through clouds—important for the

development of clouds and determining type

(rain, sleet, hail, and snow) and amount of precipitation

[0.5, 2]
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FIG. 2. Seasonal mean temperature (8C) in 1979–2009 for (left) DJF, (center) MAM, and (right) JJA from (top)

HadRM3P, (middle top) PRISM, (middle bottom) NARR, and (bottom) the bias (HadRM3P minus NARR).
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well represented in the simulations; the influences of

the major geographical features like mountain ranges

were evident, and the seasonal cycle was reproduced.

The simulated spatial patterns during winter and spring

were very close to those observed, except in winter the

cold bias was almost everywhere, while the spring

simulated temperature showed a warm bias of ;18C
along western Washington, Oregon, and California,

with the rest of the domain showing cold bias. During

summer, HadRM3P was warmer than observations

over most of the western U.S. domain except central

California and southern Nevada, and the warm bias

was larger than in winter and spring. In winter, spring,

and summer, 95% of grid points were within 2.78, 2.48,
and 3.68C of NARR, respectively.

To investigate the possible reasons for the tempera-

ture biases, we compared the seasonal mean monthly

net downward solar radiation at the surface from

HadRM3P simulations and NARR (Fig. 3). Overall, the

spatial pattern and seasonal cycle were well represented

in the simulations. Negative biases in net downward

solar radiation were present in all seasons, which ruled

out solar radiation as the reason for the warm bias in

summer. The biases were largest in spring and were

mainly associated with mountain ranges such as the

Cascades, Sierra Nevada, and Rockies, where large

FIG. 3. Seasonal mean monthly net downward solar radiation (Wm22) in 1979–2009 for (left) DJF, (center) MAM,

and (right) JJA from (top) HadRM3P, (middle) NARR, and (bottom) the bias (HadRM3P minus NARR).
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snowpacks are present, and biases may be related to the

snow–albedo feedback represented in the model. The

specific mechanisms behind these biases still need fur-

ther investigation.

For average temperature, good agreement was found

with USHCN station data. Regression of the model

tavg on USHCN tavg yielded a slope of 0.97 and an

R-squared value of 0.76 (Fig. 4). Most of the scatter in the

relationship can be explained by the difference in ele-

vation between the 25-km model resolution and the

actual elevation of the station; after removing the in-

fluence of elevation, the regression slope and R-squared

value were improved to 1.01 and 0.89, respectively.

The magnitude of precipitation and its spatial pattern

were characterized reasonably well by the regional

simulations for all seasons (Fig. 5). During winter, the

simulation showed a distinct spatial pattern that was

strongly influenced by topography, just as in PRISM.

The two precipitation bands along the U.S. West Coast

corresponded to orographic precipitation associated

with the coastal mountain ranges and, a little inland,

Cascades and Sierra Nevada. Further inland, precipi-

tation decreased in the basins and the intermountain

zone and increased again as the prevailing westerly flow

encounters the Rockies. With its coarser resolution,

NARR precipitation showed less detailed change with

respect to terrain. The HadRM3P-simulated precipi-

tation exaggerated the orographic enhancement across

the coastal mountains, Cascades, and Sierra Nevada rel-

ative to both NARR and PRISM.

Seasonal regionwide model biases for mean temper-

ature and precipitation and correlation coefficients be-

tween observed and simulated time-averaged spatial

fields are presented in Tables 3 and 4. The spatial cor-

relation between HadRM3P and NARR was higher for

temperature than for precipitation in all seasons. For

temperature, the spatial correlations were all above

0.95, with winter and spring season being as high as 0.98.

The regional simulations showed cold bias in winter and

spring andwarm bias in summer and fall. Themagnitude

of summer bias was about 2–3 times the magnitude in

other seasons. The spatial correlations for precipitation

were above 0.7 for all seasons.

To further illustrate the influence of topography on

simulated and observed temperature and precipi-

tation, we examined winter and summer tempera-

ture and precipitation cross sections along 47.758N
(across the Olympic Mountains, northern Cascades,

and Rockies) as in Salathé et al. (2010). Temperature

gradients from HadRM3P along the transect were

consistent with the observations (Fig. 6), though sum-

mer temperatures were too warm, echoing Fig. 2. Pre-

cipitation on the mountain ranges, including the westward

shifts in the precipitation peak relative to the crest

and the rapid drop in the lee (i.e., the rain shadow

effect), were simulated realistically. However,HadRM3P

exaggerated the orographic enhancement across the

coastal mountains and Cascades relative to the ob-

served. This pattern was seen in other transects (e.g.,

Sierra Nevada; shown in Fig. S1 of the supplemental

information).

Comparing the seasonal mean diurnal temperature

range (DTR) simulated by HadRM3P with NARR, we

found the spatial pattern and seasonal cycle were rela-

tively well represented in the simulations (Fig. 7). The

model produced larger DTR in all three seasons and the

largest DTR in spring, which suggests that the model

produced less cloud cover thanNARR. This largerDTR

occurred because when there is less cloud cover, there

is more incoming solar radiation reaching the surface

during the day (more heating) and more longwave

radiation escaping during nighttime (more cooling),

producing a larger diurnal temperature range. A more

complete diagnosis is beyond the scope of this paper,

though this points to a need for further research.

Because of the interest in extreme weather events, we

also compared observed and simulated winter minimum

temperature (Tmin1; formed by averaging the coldest

day for each of the three winter months) and summer

maximum temperature (Tmax1; average of the hottest

day for each of the summer months) (Fig. 8). The spatial

FIG. 4. The 50-yr average (1960–2009) temperatures (8C) from
HadRM3P and the USHCN for 147 USHCN observing stations in

a five-state region (Oregon, Idaho, Washington, California, and

Nevada). Each dot denotes a different USHCN station. The open

black circles show the original HadRM3P vs USHCN temperature,

and the solid black line is the corresponding linear regression. The

filled red circles show the elevation-adjusted HadRM3P vs

USHCN temperature, and the solid red line is the corresponding

linear regression. The 1:1 line is shown in blue.
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FIG. 5. Seasonal mean precipitation (mmmonth21) in 1979–2009 for (left) DJF, (center) MAM, and (right) JJA

from (top)HadRM3P, (middle top) PRISM, (middle bottom)NARR, and (bottom) the bias in percent (HadRM3P

minus NARR).
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patterns of Tmin1 and Tmax1 simulated by HadRM3P

resembled those of NARR. However, HadRM3P pro-

duced more extreme temperatures than NARR: simu-

lated winter Tmin1 is much colder than observations,

with the 10th percentile showing a cold bias of 2108C;
simulated summer Tmax1 is warmer than observa-

tions, with the 90th percentile showing a warm bias

of16.408C. It is worth noting here that tavg (Fig. 2) also

showed cold bias in winter and warm bias in summer;

therefore, some of the bias in Tmin1 and Tmax1 simply

reflected the bias in the mean. When the bias in the

mean was removed, the magnitude of the bias was re-

duced in both winter Tmin1 and summer Tmax1 (shown

in Fig. S2 of the supplemental material) while the spatial

patterns of biases stayed the same in general.

4. ENSO teleconnections

The dependence on ENSO of winter season pre-

cipitation and temperature anomaly patterns in the

western United States has been well studied (e.g.,

Ropelewski and Halpert 1986; Wallace et al. 1992;

Gershunov 1998; Cayan et al. 1999). Here we evaluated

HadRM3P’s ability to simulate ENSO teleconnections

as one measure of how well the climate model simulates

climate variability.

TABLE 3. The 31-yr average (1979–2009) seasonal temperature

(8C) from the HadRM3P SP experiment and fromNARR, the bias

(model minus observed), and the spatial correlation R over the

western United States. (SON denotes September–November.)

Season HadRM3P NARR Bias R

DJF 0.20 1.16 20.96 0.98

MAM 8.03 9.08 21.04 0.98

JJA 21.96 20.26 1.70 0.96

SON 11.48 11.18 0.30 0.99

TABLE 4. The 31-yr average (1979–2009) seasonal precipitation

(mm month21) from the HadRM3P SP experiment and from

NARR, the bias (model minus observed), and the spatial correla-

tion R over the western United States.

Season Model NARR Bias R

DJF 81.4 66.8 14.6 0.82

MAM 58.3 45.7 12.6 0.74

JJA 17.2 21.7 24.4 0.75

SON 48.5 41.8 6.7 0.83

FIG. 6. Simulated and observed (a) DJF temperature, (b) JJA temperature, (c) DJF precipitation, and (d) JJA

precipitation along a west–east transect at 47.758N.
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To test the ability of the regional model to simulate

ENSO teleconnections, In this paper we showed the

western U.S. winter season anomalies in temperature

and precipitation associated with warm ENSO events

during the 31-yr period of 1979–2009 from HadRM3P

simulations and from various observational datasets

(Figs. 9 and 10). The Niño-3.4 index (an average of sea

surface temperature in the region bounded by 1208–
1708W and 58S–58N) derived from the HadISST1 global

sea surface temperature dataset (Rayner et al. 2003) was

used to identify warm and cold ENSO events. Events

were defined as five consecutive months [November–

March (NDJFM)] at or above 18C anomaly for warm

phase and at or below 218C for cold phase. Six warm

events (1983, 1987, 1992, 1995, 1998, and 2003) were

identified and used in the following composite analysis.

The climate anomalies were computed as the deviation

of 3-month (December through February)means for the

warm ENSO years from the 31-yr averages. As can be

seen in Figs. 9 and 10, warm ENSOwas characterized by

warmer, drier conditions in the northwestern United

States and cooler, wetter conditions in the southwestern

United States in HadRM3P simulations. The spatial

patterns of the HadRM3P-simulated and observed

ENSO anomalies were not identical. For precipitation,

the correlations between the HadRM3P-simulated

anomaly pattern and those of NARR, PRISM, CRU

TS, CPC, and GPCC are 0.85, 0.83, 0.82, 0.75, and 0.81,

FIG. 7. Seasonal mean monthly DTR (8C) in 1979–2009 for (left) DJF, (center) MAM, and (right) JJA from (top)

HadRM3P, (middle) NARR, and (bottom) the bias (HadRM3P minus NARR).
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respectively; meanwhile, for temperature, the correlations

between the HadRM3P-simulated anomaly pattern and

those of NARR, PRISM, and CRU TS are 0.68, 0.69, and

0.76, respectively (the correlations for La Niña years are

shown in Tables S1 and S2 in the supplemental material).

For both temperature and precipitation, the transition of

the sign of the anomalies occurred through Southern

California, Nevada, and Utah in the HadRM3P simula-

tions, while the location of the transition was not in com-

plete agreement among observational datasets. For the

different observational datasets, the transition of the sign

of the precipitation anomalies occurred roughly all along

northeastern California, central Nevada, and southern

Utah, while in the northern states the agreement was less

strong than in the south. Observations showed wetter

anomalies along the U.S. West Coast and much drier

anomalies in northern Montana in warm ENSO events.

It is worth noting that in the results presented here, for

each observation record, we had 6 examples of atmo-

spheric response to El Niño forcing but 6 times ;500

FIG. 8. Seasonal mean monthly Tmin1 (8C) in 1979–2009 for (left) DJF, and seasonal mean

monthly Tmax1 (8C) in 1979–2009 for (right) JJA from (top) HadRM3P, (middle) NARR, and

(bottom) the bias (HadRM3P minus NARR).
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examples (depending on availability) from HadRM3P.

Therefore, relative to the observed teleconnections, in-

ternal variabilities were reduced by averaging in the

modeled ensemble, and this could account for some of

the discrepancies between HadRM3P simulations and the

observed. To verify this, we applied a t test at the 5% level

to determine the statistical significance of the composites.

Areaswhere the anomalies were statistically significant are

shown in Figs. S3 and S4 of the supplemental material. For

each observation record, with a small sample size, the El

Niño pattern was significant over a very small part of the

domain—a very conservative view would compare models

to observations only at those points that are statistically

significant, although a more lenient view would consider

the whole pattern even though in some places the anom-

alies cannot be differentiated from random noise. To ex-

plore the sensitivity of our comparison to sample size, we

lowered the criteria to select ENSO events to at or above

FIG. 9. El Niño years seasonal (DJF) mean precipitation anomaly (%) from HadRM3P and

other observational datasets. The number in the bottom-left corner in each panel is the spatial

correlation of that dataset with HadRM3P.
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(at or below) 10.58C (20.58C) for warm (cold) phase and

expanded the period of record to 1960–2009, which in-

creased the number of warm ENSO events to 16. NARR

begins in 1979, so we excluded NARR in the following

analysis. The result of changing the selection criteria was

that the areas where the observed anomalies are statistically

significant only decreased (Figs. S5 and S6 in the supple-

mental material). One possible explanation for this is that

winter temperature and precipitation in the western United

States are affected by many factors other than ENSO; the

influence ofENSOon temperature andprecipitation should

be more detectable during strong ENSO episodes than

during weak ones.When averaging strong and weak ENSO

events together, the intensity of the impacts is less strong

and the random noise is more evident than when looking at

strongENSOevents alone.Basedon the analysis donehere,

ENSO teleconnections are a weak metric for evaluating

model performance, as noted also by Rupp et al. (2013).

5. Assessment of added value from a
superensemble

We compared our results from weather@home to

NARCCAP, a multimodel ensemble study covering the

United States, to demonstrate how our superensemble

can augment studies like NARCCAP. For the western

United States, normalized standard deviations and cor-

relation coefficients for 21-yr annual average (Decem-

ber 1979 through November 1999) spatial fields of

temperature (tas) and precipitation rate (pr) from

50-per-year weather@home ensemble members and for

21-yr annual averages over 1979–99 from 11NARCCAP

RCM–GCM simulations are shown in a Taylor (2001)

diagram in Fig. 11. The reference field for the normali-

zation and the correlation was NARR 1979–99. We

compared only the time period for which all three data-

sets overlapped. Normalized standard deviation was

calculated as the spatial standard deviation of a simu-

lation divided by the spatial standard deviation of

NARR. Note that a perfect simulation would have

both a normalized standard deviation and a correlation

equal to unity. The skill in simulated temperature was

better in the 25-km resolution HadRM3P than in the

50-km resolution NARCCAP models, with correlation

for HadRM3P typically .0.98 and normalized stan-

dard deviation all clustered close to unity. However,

HadRM3P did not show better skill in precipitation

simulation than NARCCAP. It is worth pointing out

FIG. 10. As in Fig. 9, but for mean surface temperature anomaly (8C).
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that the coupled HadRM3–HadCM3 (HRM31HadCM3

in NARCCAP convention) demonstrated similar skills

in simulating temperature (Fig. 11; filled triangle)

and precipitation (Fig. 11; filled circle) as HadRM3P–

HadAM3P, even though HadAM3P is an atmosphere-

only model and SSTs are specified whereas HadCM3

is a coupled ocean–atmosphere model. This similarity

between HadRM3P–HadAM3P and HadRM3–HadCM3

suggests that the dynamical coupling between ocean

and atmosphere in NARCCAP did not explain most

of the difference between HadRM3P–HadAM3P and

the various NARCCAP RCM–GCM pairings but that

the differences were due mainly to the atmospheric

dynamics.

Looking at the 50 ensemble members from weather@

home, even though each ensemble member was already

averaged over 21 years, there was still notable spread for

precipitation. This result highlights the need to run a

number of simulations starting from different initial

conditions with a given climate model to get to the

‘‘true’’ behavior of the model. Because any single model

simulation contains internally generated variability

(noise) and externally forced signal, only by averaging

ensemble members starting from different initial states,

while subjecting the model to the same external forcing,

can the random sequence of internal variability be re-

duced enough to reveal the true model behavior, as

pointed out also by Deser et al. (2014).

The real power of large ensembles lies in the potential

to simulate extreme events, as pointed out by Massey

et al. (2015). To demonstrate this, we calculated the

frequency distribution of errors with increasing ensem-

ble size for the following statistics: JJA mean tempera-

ture, DJF mean precipitation, JJA 98th-percentile

temperature, and DJF 2nd-percentile precipitation for

one year over Los Angeles (Fig. 12). This analysis began

with 2106 ensemble members taken fromHadRM3P for

the year 2008 averaged over a 18 3 18 box using Los

Angeles as the center point. From the population of 2106

values, 10000 random samples of ensemble size N, with

replacement, were taken, and the statistic (mean or per-

centile) was calculated for each ensemble. In Fig. 12, the

box (inner quartiles) and whiskers (5th and 95th percen-

tile) summarized the frequency distribution of the statistic

for eachN. This figure demonstrated the power of creating

multiple realizations of 1 year’s worth of ‘‘weather’’ to

narrow the confidence limits about estimation by the

model. Figure 12a showed that to be within 618C of the

true simulated summer mean temperature at the given

level of confidence (within the 5th and 95th percentile), we

needed at least 16 ensemble members; for 60.58C, we
needed 64 ensemble members. Figure 12b showed that 16

ensemblememberswould get uswithin260%to180%of

the true simulated winter precipitation for Los Angeles,

while it would take 64 to be within650%.

For the mean, multiple years in a time series can, to

some degree, substitute for multiple ensemble members

for a single year. The advantage of the large ensemble is

clearer when analyzing the tails of the distribution. For

example, for the summer 98th-percentile temperature

(Fig. 12c), 128 ensemblemembers were required to have

an error within a range of 60.58C at the given confi-

dence level. For the winter 2nd-percentile precipitation

(Fig. 12d), more than 128 ensemble members were

needed for an error range of 6100%. Running large

numbers of simulations of possible weather under the

same external forcing affords us the opportunity to

simulate impact-relevant extreme events and to obtain

statistics on extreme weather.

So far, we have focused our analysis on the SP en-

semble. Our PP experiment affords us the opportunity

to explore parameter uncertainties and the effect of

different parameter perturbations. As shown in section

4, HadRM3P SP simulations exaggerated the oro-

graphic enhancement across the coastal mountains,

Cascades, and Sierra Nevada compared with observa-

tions. Here we examine whether certain parts of the

parameter space lead to better model performance in

FIG. 11. Taylor (2001) diagram showing normalized standard

deviations (radius) and correlation coefficients (angle) for annual

tavg (tas; triangle) and precipitation rate (pr; circle) from

weather@home (black), with each data point representing one of

50 ensemble members, averaged over 21 years (December 1979

through November 1999). Also shown are the same variables from

11 simulations from NARCCAP for the same time period (red).

The solid red symbols correspond to the HadRM3–HadCM3

combination used in NARCCAP. The reference field for the nor-

malization and the correlation is the NCEP NARR.
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simulating orographic enhancement and whether there

are certain physical processes that could be parameter-

ized better to give a more realistic simulation. To ex-

plore this possibility, in Fig. 13 we showed the winter

season precipitation from parameter sets P1, P2, and P3

along a 47.758N transect, as in Fig. 6. Each transect in

Fig. 13 was the averaged results of 110 different initial

condition perturbations, so the internal variability had

been minimized, and the differences should be mainly

due to different parameter values. There was a clear

distinction between the precipitations produced by P1,

P2, and P3, especially across the coastal mountains and

Cascades; results for all three parameter sets were very

similar east of the Cascades. The default P1 lay in be-

tween the drier P2 and the wetter P3, as expected. These

results underscore the effects of different parameter

perturbations on regional precipitation, and the large

variation of precipitation values produced by different

parameter perturbation combinations suggests that

there are certain perturbations that will produce a

model variant that simulates the orographic enhancement

more realistically than the standard version. A thorough

discussion of parameter combinations and relevant physi-

cal processes involved is beyond the scope of this paper and

will be explored in a subsequent paper; we have presented

these results as an example of the strength of being able to

generate supersensembles.

6. Conclusions and further discussion

This paper evaluated properties of the climate of the

western United States as simulated by a regional climate

model in the weather@home system. The regional sim-

ulations reproduced many climate features that are im-

portant in the western United States and added more

detail at the regional scales. The spatial patterns of

temperature and precipitation in the western United

States were much more accurately represented in the

regional simulations than in the global simulations.

Overall, temperature was well represented in the

simulations and the influences of the major geographical

features were reproduced; 95% of grid points were

FIG. 12. The distribution of the deviation, or error, in the ensemble statistic from the pop-

ulation statistic with increasing ensemble size for (a) JJA mean temperature, (b) DJF mean

precipitation, (c) JJA 98th-percentile temperature, and (d) DJF 2nd-percentile precipitation

from the HadRM3P for one year (December 2008 through November 2009) for Los Angeles.
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within 2.78, 2.48, and 3.68C of NARR for the means in

winter, spring, and summer, respectively. There was a

pervasive summer warm bias over the western United

States except central California and southern Nevada.

Though we ruled out bias in solar radiation as a possible

cause, further investigation of model physics, particu-

larly cloud-related parameterizations, is warranted. For

extreme temperature, in most places, winter extremes of

Tmin1 were somewhat lower than observed and summer

Tmax1 values were higher than observed. This should be

taken into consideration if and when this model is used

to make projections of future changes in extreme

weather events at the local scale described here. Future

work could explore whether parameter perturbations

could improve the simulation of extremes.

The overall magnitude of precipitation and its geo-

graphical features were reasonably well characterized

by the regional simulations for all seasons, though

simulated precipitation exaggerated the orographic

enhancement across the coastal mountains, Cascades,

and Sierra Nevada compared with observations. The

importance of topographic control on regional climate

conditions was illustrated through the examination of

temperature/precipitation–topography relationships.

Analyses of temperature/precipitation and topography

along an east–west transect showed significant impacts

of surface terrain on the spatial pattern of precipitation.

Rain shadow effects were captured well along the coast,

Cascades, and Sierra Nevada; the transects of pre-

cipitation showedmany features of the observed transect,

including the location of peak precipitation west of the

crest and a rapid drop by a factor of 5 or more in the lee.

The HadRM3P simulations produced warm/dry

northwest and cool/wet southwest U.S. patterns associ-

ated with warm ENSO. However, there were also

notable differences, including the locations of the

transition of the response from warm (dry) to cool

(wet) in the anomaly fields, with the transition of

anomaly signs extending farther south in California

and Nevada than what was seen in the observations.

However, the sample size of the observational records

was too limited to conclude that the placement of the

zero line in HadRM3P was significantly different from

observed.

In this paper we showed how our superensemble

augments other regional ensemble modeling studies

through a comparison with NARCCAP. We also dem-

onstrated the power of a superensemble by showing how

as more ensemble members were included in the anal-

ysis, the signal-to-noise ratio improved sufficiently

to estimate with high precision not only the means

but more importantly the extremes. Historically, the

strength of regional model simulations (viz., a spatial

resolution high enough to resolve key features like rain

shadows) was offset by their key weakness (viz., only

one or a few runs—too few to determine whether dif-

ferences between runs weremeaningful or just statistical

noise) (see O’Brien et al. 2011). This experiment allows

us to run simulations at a high enough resolution to re-

solve key regional features and to runmultiple ensemble

members to provide robust assessments of physically

meaningful forced signals as opposed to internally

generated variability. Our experimental results can

supplement studies like NARCCAP by providing

superensemble results for western North America,

allowing more complete characterization of natural

variability, exploration of the effect of different pa-

rameterizations, and better analysis of extreme events.

Discussions about uncertainty due to internally gener-

ated variability have come to the fore in the past few

years, and global models (e.g., CCSM3) have been used

inmany studies (Deser et al. 2012a,b; Oshima et al. 2012;

Kang et al. 2013; Hu and Deser 2013; Wettstein and

Deser 2014; Wallace et al. 2015) to investigate un-

certainty due to internal variability on a large scale. Our

experiment provides the opportunity to investigate un-

certainty due to internal variability on a finescale re-

gional level. We also demonstrated that by exploring

different parameter combinations, we could produce

model variants that do better than the standard version,

which could lead to optimal regional performance.

Through the control of initial condition perturbations

and the sampling of model variants in the parameter

space (though not in model structure space), we can

utilize this large ensemble to better understand two of

the major sources of uncertainty: initial condition and

model response, within the models used here, specifi-

cally for this region.

FIG. 13. Simulated DJF precipitation along the same west–east

transect as in Fig. 6, from P1 (default), P2 (drier), and P3 (wetter).
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