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ABSTRACT

Planning of mitigation and adaptation strategies to a changing climate can benefit from a good under-

standing of climate change impacts on human life and local society, which leads to an increasing requirement

for reliable projections of future climate change at regional scales. This paper presents an ensemble of

high-resolution regional climate simulations for the province of Ontario, Canada, developed with the Pro-

viding Regional Climates for Impacts Studies (PRECIS) modeling system. A Bayesian statistical model is

proposed through an advance to the method proposed by Tebaldi et al. for generating probabilistic pro-

jections of temperature changes at gridpoint scale by treating the unknown quantities of interest as random

variables to quantify their uncertainties in a statistical way. Observations for present climate and simulations

from the ensemble are fed into the statistical model to derive posterior distributions of all the uncertain

quantities through a Markov chain Monte Carlo (MCMC) sampling algorithm. Detailed analyses at 12 se-

lected weather stations are conducted to investigate the practical significance of the proposed statistical

model. Following that, maps of projected temperature changes at different probability levels are presented to

help understand the spatial patterns across the entire province. The analysis shows that there is likely to be

a significant warming trend throughout the twenty-first century. It also suggests that people in Ontario are

very likely to suffer a change greater than 28C to mean temperature in the forthcoming decades and very

unlikely to suffer a change greater than 108C to the end of this century.

1. Introduction

Climate change is becoming one of the most pressing

issues around the world. It has already started to affect

every continent, country, community, and individual. As

the largest economy in Canada, the province ofOntario

is now facing extraordinary challenges under a chang-

ing climate. In recent years, people are seeing more

frequent and intense weather anomalies, shorter dura-

tion of ice cover on lakes, and fluctuating water levels

in lakes, rivers, and streams (Ontario Ministry of the

Environment 2011a). For example, local residents in

southern Ontario suffered the hottest summer yet in

2010, which was deemed the hottest year on record by

Environment Canada, leading to an increasing require-

ment for investments in energy systems, especially in

the electricity system (OntarioMinistry of Energy 2010).
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In response to these challenges, the province of Ontario

has been taking prudent steps to protect its health,

economy, and communities from the harmful effects of

climate change (Ontario Ministry of the Environment

2011b). The realization of such an adaptation initiative

substantially depends upon how well we know and how

confident we are about the negative impacts of a chang-

ing climate in the context of Ontario. It thus leads to

the development of reliable climate projections at finer

resolutions over the domain of Ontario, aiming at pro-

viding decision makers or policy makers with helpful

information for assessing plausible future effects of cli-

mate change at regional scales.

Forecasts of future climate change with current state-

of-the-art climate models can provide potential evidence

for decision makers and policy makers to help determine

how to adapt to or mitigate climate change. However,

these forecasts are inevitably uncertain due to our in-

complete understanding of the climate system in terms

of its complicated physical processes and natural vari-

ability, as well as the response to rising levels of green-

house gases (Allen et al. 2000; Murphy et al. 2004;

Stainforth et al. 2005; Stott and Kettleborough 2002;

Webster et al. 2003). This further results in consider-

able uncertainties about the rates of change that can be

expected, such as changes in extremes of temperature

and precipitation and sea level rise (Karl and Trenberth

2003). No single model can be powerful enough to tackle

such uncertainties all at once, so it is necessary to uti-

lize results from a range of coupled models (Houghton

et al. 2001).

Previously, a number of climate research projects

based on multimodel ensemble (MME) or perturbed

physics ensemble (PPE) approaches have been carried

out to explore techniques for quantifying uncertainties

of future climate change (e.g., Barnett et al. 2006; Furrer

et al. 2007; Giorgi and Francisco 2000; Giorgi and

Mearns 2002, 2003; Greene et al. 2006; Harris et al. 2013;

Murphy et al. 2007; Sexton et al. 2012; Tebaldi and Sans�o

2009; Tebaldi et al. 2005; Watterson andWhetton 2011).

The MME approach usually consists of various GCMs

developed at different modeling centers around the

world to sample both structural and parametric un-

certainties to a limited degree (Meehl et al. 2007; Taylor

et al. 2012), but it is unable to sample the consequences

of either type of uncertainty in a systematic fashion since

it is assembled on an opportunistic basis from current

available models (Murphy et al. 2007; Sexton et al. 2012).

The PPE usually consists of variants of a single base

model with perturbed parameters limited in a space

of possible model configurations (Collins et al. 2006;

Murphy et al. 2004; Webb et al. 2006; Yokohata et al.

2010). The main advantage of the PPE approach is that

it allows greater control over the design of experiments

to sample parametric uncertainties within a single model

framework. Both ensemble approaches can generate

a large number of projections of future climate for

various scenarios, but how to combine these multiple

projections and interpret them into policy-relevant in-

formation has become a major challenge in recent years,

due to the lack of verification of climate projections,

the problems of model dependence, bias, and tuning,

and the difficulty in making sense of an ‘‘ensemble of

opportunity’’ (Knutti et al. 2010; Tebaldi and Knutti

2007).

There are obviously different ways to synthesize

modeling results of MMEs or PPEs. A straightforward

way is to calculate the multimodel averages for given

diagnostics or variables where each model is weighted

equally (R€ais€anen and Palmer 2001). In many cases,

combining ensemble results through Bayesian methods

or weighted averages, where weights are determined

by comparing model predictions to observations, shows

improved performance better than simple averages (e.g.,

Barnston et al. 2003; Krishnamurti et al. 1999, 2000;

Robertson et al. 2004). The article by Tebaldi and Knutti

(2007) presents a comprehensive literature review on

the existing published methods to obtain best estimates

of climate change based on multiple projections through

ensemble approaches. It concludes that the combined

estimates, which are generally expressed in a probabi-

listic way based on a variety of statistical methods (e.g.,

Giorgi andMearns 2002, 2003; Tebaldi et al. 2005), may

give more helpful information for impact studies and

decision making given that none of the model projec-

tions for future climate can be validated at this stage.

For example, as each estimate comes with a specific level

of occurrence (i.e., probability), it thus allows for plan-

ning appropriate adaptation strategies in advance by

balancing the tradeoff between the adapting costs and

the potential damages of climate change at different

probabilistic levels.

However, previous probabilistic studies have mainly

focused on quantifying climate change uncertainties at

global scales based on various GCM ensembles (e.g.,

Furrer et al. 2007; Greene et al. 2006; Tebaldi andKnutti

2007; Tebaldi and Sans�o 2009). Additional downscaling

work needs to be done before feeding the probabilistic

projections into impact models (e.g., hydrological modes

or crop models) because of the coarse resolution of

GCM outputs, by either statistical approaches (e.g.,

Wang et al. 2013; Wilby et al. 2004) or regional climate

models (RCMs) . A small number of papers published

in recent years (e.g., Benestad 2004; Luo et al. 2005;

Manning et al. 2009; New et al. 2007) have approached

the problem of deriving regional probabilistic projections
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at a finer resolution to facilitate the assessment of re-

gional and local climate change impacts, but they are

characterized by a less general approach and are tailored

to specific regions or impacts studies.

The objective of this research is to develop high-

resolution probabilistic projections of temperature

changes for the province of Ontario, Canada, where

uncertainties in observational errors, model reliability,

and temporal correlation of climate change signals will

be reflected through a Bayesian hierarchical model.

Specifically, a 25-km RCM ensemble is first developed

and assembled by using a subset of 17-member PPE

ensemble (McSweeney et al. 2012), which is developed

based on the Hadley Centre Coupled Model, version 3

(HadCM3), as boundary conditions to drive the Pro-

viding Regional Climates for Impacts Studies (PRECIS)

regional modeling system (Jones et al. 2004) from 1950

to 2099. A Bayesian statistical model is then advanced

based on the method proposed by Tebaldi et al. (2005)

for generating probabilistic projections of climate change

at grid point scale, by treating the unknown quantities of

interest as randomvariables to quantify their uncertainties

in a statistical way. Observations for current climate and

simulations of the PRECIS ensemble are fed into the

Bayesian model to derive posterior distributions of all the

uncertain quantities, which are next used to construct

probabilistic projections of temperature changes over

Ontario. This paper is organized as follows: section 2

describes the development of RCM ensemble using

PRECIS; section 3 details the formulation of a Bayesian

hierarchicalmodel; section 4 presents the results including

the main findings at 12 selected weather stations and

maps of projected temperature changes at different

probabilistic levels over the entire province; and the last

section summarizes the study and states the main con-

clusions.

2. Development of RCM ensemble

a. Study area

As the second largest province in Canada, Ontario

is located in the east-central area of Canada and covers

more than 106 km2. As shown in Fig. 1, Ontario is

bounded by Quebec to the east, Manitoba to the west,

Hudson Bay and James Bay to the north, and the Great

Lakes to the south.With a population of more than 13.5

million, Ontario is home to about 2 in 5 Canadians.

More than 85% of the total population lives in urban

centers, largely in cities on the shores of the Great

Lakes. In summer, temperatures in Ontario can soar

above 308C, whereas in winter they can drop below

2408C. It has been reported by Ontario Ministry of

the Environment (2011a) that the average tempera-

ture in Ontario has gone up by as much as 1.48C since

1948. In southern Ontario, the number of days over

FIG. 1. Map of study area.
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308C will likely more than double by 2050. This will

lead to hotter summers with more heat waves.

The greatest change will likely take place in the far

north in winter. Warmer winters will make it more

difficult for wildlife and people in the far north to

adapt. For example, some dramatic changes have al-

ready started near the coast of Hudson Bay and James

Bay. Furthermore, warmer temperatures are causing

the loss of permafrost, which may result in changes in

the local landscape and the stability of houses and

buried water pipes. The water levels in the Great Lakes

have been found to be dropping with warmer winters,

less ice cover, and hotter summers. This change will

directly influence more than 70% of people in the

province who depend on the Great Lakes for their

drinking water.

In 2007, Ontario introduced its climate change action

plan as a framework for action to reduce green-

house gas (GHG) emissions (Ontario Ministry of the

Environment 2011c). Following that, the government of

Ontario (Ontario Ministry of the Environment 2011b)

reported its adaptation strategy and action plan to create

a vision and framework for collaboration across gov-

ernment, businesses, communities, institutes, and indi-

viduals, aiming at minimizing the negative impacts of

a changing climate by taking prudent actions to adapt

well to climate change. Such initiatives require a better

understanding of how the climate of Ontario will change

in both short and long terms, through a regional climate

modeling approach.

b. Regional climate modeling using PRECIS

Regional climate modeling is an essential way for

conducting thorough assessments of climate change im-

pacts by providing impact researchers with regional

detail of how future climate might change. An RCM is

a powerful tool to add small-scale detailed information

of future climate change to the large-scale projections

of a GCM. RCMs are physics-based climate models

and as such represent most or all of the processes, in-

teractions, and feedbacks between the climate system

components that are represented in GCMs (Jones et al.

2004). By taking coarse-resolution information from

GCMs, RCMs can develop temporally and spatially

finescale information using their higher-resolution rep-

resentation of the climate system. In this study, we apply

a widely used RCM developed at the Hadley Centre,

PRECIS, to facilitate regional climate modeling over

Ontario. PRECIS is a flexible, easy to use, and com-

putationally inexpensive RCM designed to provide

detailed climate scenarios (Wilson et al. 2011). It can be

applied easily to any area of the globe to generate de-

tailed climate change projections, with the provision of

a simple user interface as well as a visualization and

data-processing package. PRECIS is able to run at two

different horizontal resolutions: 0.448 3 0.448 (approxi-
mately 50 km 3 50 km) and 0.228 3 0.228 (approxi-

mately 25 km 3 25 km), with a vertical resolution of

19 atmospheric levels using a hybrid coordinate system

(a linear combination of a terrain-following s coordinate

and an atmospheric pressure–based coordinate).

Using a single GCM projection to drive RCMs can

provide us with some information about the expected

changes under a given emission scenario for the region

of interest, but it does not provide us with more in-

formation about how confident we should be in those

changes (Bellprat et al. 2012). The ensemble approach

through either MMEs or PPEs is widely accepted as an

effective way to explore the range or spread of pro-

jections from multiple members, which enables us to

gain a better understanding of the uncertainties in cli-

mate modeling. The Hadley Centre has published 17

sets of boundary data from a perturbed physics ensem-

ble (i.e., HadCM3Q0-Q16, known as QUMP), which is

based on HadCM3 under the Special Report on Emis-

sions Scenarios (SRES) A1B emission scenario, for use

with PRECIS in order to allow users to generate an

ensemble of high-resolution regional simulations

(McSweeney and Jones 2010). Downscaling the 17-

member PPE ensemble with PRECIS would require

very large inputs of computing resources, data storage,

and data analyses. To explore the range of un-

certainties while minimizing these requirements, we

select a subset of five members (i.e., HadCM3Q0, Q3,

Q10, Q13, and Q15) from the QUMP ensemble ac-

cording to the Hadley Centre’s recommendation (see

http://www.metoffice.gov.uk/precis/qump). HadCM3Q0 is

first selected as it is the standard, unperturbed model

using the original parameter settings as applied in the

atmospheric component of HadCM3. Selection of the

remaining four members is based on 1) their perfor-

mances in simulating key features of the climate over

Ontario, and 2) their ability to sample the range of

outcomes of future changes simulated by the full 17-

member ensemble (Bellprat et al. 2012).

We run five PRECIS experiments driven by bound-

ary conditions from the selected GCM members from

1950 to 2099 at its highest horizontal resolution (i.e.,

25 km). This allows us to carry out undermentioned

probabilistic analyses by providing full simulation cov-

erage from the present day to the future. The PRECIS

model outputs are extracted and divided into four 30-yr

periods: one baseline period (1961–90), and three future

periods (2020–49, 2040–69, and 2070–99), representing

its simulations for the province of Ontario under cur-

rent and future climate forcings.
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c. Data

We focus on the temperature responses over the

province of Ontario under the SRES A1B emission sce-

nario (Nakicenovic and Swart 2000). Three temperature-

related variables, daily maximum temperature (Tmax),

daily mean temperature (Tmean), and daily minimum

temperature (Tmin), are extracted from the outputs of

five PRECIS runs. Projection on each variable is di-

vided into four 30-yr periods: 1961–90, 2020–49, 2040–

69, and 2070–99. We regard the period of 1961–90 as

a baseline so that the model outputs on this period can

be used to represent simulation on current climate,

while projections of future climate are reflected in the

remaining three periods and simulation on each period

will be separately treated. Observed temperature means

for the baseline period are derived from the raster-

gridded climate dataset provided by the National Land

and Water Information Service, Agriculture and Agri-

Food Canada. The dataset contains 10-km gridded point

estimates of daily maximum temperature and mini-

mum temperature, which are interpolated from daily

Environment Canada climate station observations us-

ing a thin plate smoothing spline surface fitting method

implemented by the ANUSPLIN V4.3 software package

(NLWIS 2007). Dailymean temperature on each grid is

calculated using (Tmax 1 Tmin)/2. The observed

temperature means derived from the 10-km dataset are

then regridded to the 25-km grids of PRECIS model.

3. Bayesian hierarchical model

Suppose we have observation data for the present

climate, denoted as x0, and the PRECIS simulations are

expressed as xi (for current climate) and yi (for future

climate), for i5 1, 2, . . . , N; here N5 5, indicating the

total number of PRECIS runs. We further assume that

the PRECIS outputs depend on some parameters that

are unknown due to uncertainties in climate models.

In addition, the quality of observation data may be af-

fected by some unexpected factors such as measurement

error, equipment failure, and so on. Let Q be the vector

of all unknown parameters involved in both observa-

tions and model simulations. The Bayesian viewpoint

allows us to treat these parameters as random variables

in order to quantify the uncertainties of interest in

a statistical way. Specifically, we can construct a proba-

bilistic model for random parameters Q, which are con-

ditional to existing data D consisting of observations x0
and model simulations xi and yi, as follows:

p(QjD)} p(Q) � p(DjQ) , (1)

where p(QjD) is the posterior distribution of Q given

our best understanding of the climate system based on

existing observations and model simulations (it is a

probabilistic representation of what we can conclude

about the unknown parameters after we observe and

model the climate system); p(Q) is the prior distribu-

tion of Q indicating what we know about the unknown

parameters before we obtain data D; p(DjQ) is the

likelihood specifying the conditional distribution of

the data given all involved parameters, which is for-

mulated under some statistical assumptions; and the

symbol } means a proportional relationship up to a

normalizing constant (namely marginal distribution),

which is usually intractable integral and not necessary

to compute in Markov chain Monte Carlo (MCMC)

simulation (Brooks 1998). Therefore, an empirical es-

timate of the posterior distribution is usually obtained

through a MCMC implementation to the statistical

model, bypassing the need to compute it analytically.

Statistical inferences can be drawn based on the MCMC

samples using smoothed histograms, numerical ana-

lyses, etc.

a. Likelihoods

We assume Gaussian distribution for observations x0:

x0;N(m,l21
0 ) , (2)

where the notation N(m, l21
0 ) indicates a Gaussian dis-

tribution with mean m and variance l21
0 . Here m repre-

sents the true value of current climate mean, and l21
0 is

treated as a random variable to indicate that the ob-

servations are centered on the true value of current

climate with a random error. Observations may suffer

from both random errors (i.e., measurement and sam-

pling) and systematic errors due to different measure-

ment platforms and practices (Rayner et al. 2006). We

use l0 here to account for these uncertainties in obser-

vations. Thus we express the statistical assumption for

x0 as follows:

x05m1 x , (3)

where x;N(0, l21
0 ).

Similarly, we assume Gaussian distribution for xi:

xi ;N(m,l21
i ) , (4)

where li is referred to as the precision of distributions

xi in estimating current climate, following the defini-

tion proposed by Tebaldi et al. (2005). The assumption

underlying Eq. (4) is that the model simulation is a

symmetric distribution, whose center is the true value

of current climate, but with an individual variability. As

such, li can be treated as a quantity for assessing the

performance of the ith PRECIS run in reproducing
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current climate, while driven by the corresponding

boundary conditions from the QUMP ensemble. Ac-

cordingly, the statistical assumption for xi can be ex-

pressed as follows:

xi 5m1hi , (5)

where hi ;N(0, l21
i ). Projecting future climate with

a climate model is to some extent correlated to its ca-

pability in hindcasting observed climate, so we there-

fore treat yi and xi as dependent distributions through

a linear regression equation. Thus yi can be formulated

as follows:

yi5 n1 ji 1b(xi 2m) , (6)

where n represents the true value of future climate

mean; ji ;N[0, (uli)
21], the product of uli is referred

to as the precision of distribution yi in terms of simu-

lating future climate, while u is introduced as an addi-

tional parameter to allow for different precision for yi
from xi in all PRECIS runs; and b is an unknown re-

gression coefficient. A value of b equal to 0 indicates

independence between yi and xi; otherwise, positive

values imply direct relations and negative for inverse

ones between these two quantities. Likewise, we as-

sume the likelihood of yi as a Gaussian distribution:

yi ;N[n1b(xi 2m), (uli)
21] , (7)

where we use the term of b(xi 2m) to imply a linear

adjustment to the projection of future climate based on

the model bias for current climate simulation.

b. Prior distributions

The statistical model described by Eqs. (2), (4),

and (7) are formulated using a set of parameters:

fm, n, b, u, l0, l1, . . . , lNg. We assume uninformative

prior distributions for these parameters as follows:

(i) The true values of current and future climate

means,m and n, are assumed to have uniform priors

on the real line (i.e., [2‘, 1‘]).
(ii) The regression coefficient (b) is presumed to be

freely varying between 21 and 11, thus a uniform

distribution on [21, 1].

(iii) Based on the estimation of Giorgi and Mearns

(2002) in terms of natural variability of observed

temperature at different regions for winter and

summer seasons, we assume gamma prior density

for l0 and the first guesses for its mean and variance

are 4.5 and 19.3 respectively. Thus we formulate the

prior distribution of l0 as follows:

l0;Gamma(m,n)5
nm

G(m)
lm21
0 e2nl

0 , (8)

where m5 1:05 and n5 0:23.

(iv) We assume gamma distributions for l1, . . . , lN :

li ;Gamma(a,b)5
ba

G(a)
la21
i e2bl

i , i5 1, . . . ,N .

(9)

Similarly, gamma distribution for u:

u;Gamma(c, d)5
dc

G(c)
uc21e2du . (10)

Here we set a5 b5 c5 d5 0:001; this is to translate

these assumed priors into gamma distributions with

mean 1 and variance 1000 (Tebaldi et al. 2005). By doing

so, we can get extremely diffused priors to reflect our

poor understanding about these unknown parameters.

c. Posterior distributions

Inferences for the statistical model defined in Eq. (1)

can be achieved by applying Bayesian theorem to the

likelihoods and priors described above. The joint pos-

terior distribution is obtained up to a constant by taking

the product of all conditional distributions. Thus, we

have

p(Q jD)} P
N

i51

�
la21
i e2bl

i � li
ffiffiffi
u

p
exp

�
2
li
2
f(xi2m)21 u[yi 2 n2b(xi 2m)]2g

��

� uc21e2du � lm21
0 e2nl

0 �
ffiffiffiffiffi
l0

q
exp

�
2
l0
2
(x02m)2

�
. (11)

From Eq. (11) we can obtain full conditional distribu-

tion for each parameter by ignoring all other parameters

that are constant with respect to the parameter of interest.

In our case, full conditional distributions for all parameters

are well-known distributions such as the gamma or

Gaussian ones. We can therefore perform MCMC sim-

ulation through a Gibbs sampler. The formulation of the

full conditional distributions for all parameters, the steps
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of Gibbs sampler as well as the implementation of

MCMC algorithm are given in appendixes A, B, and C.

Here we show how to obtain the probabilistic

climate change projections based on the PRECIS

experiments driven by different boundary conditions.

First, the full conditional distribution of m is derived

from Eq. (11) by fixing all other parameters, as a Gauss-

ian distribution:

p(m j x0, x1, . . . , xN , y1, . . . , yN)}N

8>>>><
>>>>:
�
N

i51

[lixi2 ubli(yi 2 n2bxi)]1 l0x0

l01 �
N

i51

li(11 ub2)

,

"
l01 �

N

i51

li(11 ub2)

#21

9>>>>=
>>>>;
. (12)

In a similar way, the full conditional distribution of n can be obtained as follows:

p(n j x0, x1, . . . , xN , y1, . . . , yN)}N

8>>>><
>>>>:
�
N

i51

li[yi 2b(xi 2m)]

�
N

i51

li

,

 
u �

N

i51

li

!21

9>>>>=
>>>>;
. (13)

Likewise, we can derive the full conditional posterior

distributions for the remaining parameters (as presented

in appendix A). By doing a series of random drawings

using Gibbs sampler, we have a large number of sam-

ples for m and n. The densities of these MCMC samples

can be treated as approximate representations of their

full conditional distributions. The climate change quan-

tity is a random variable that can be represented by the

difference between the true value of future climate and

that of current climate, expressed as

D5 n2m . (14)

Thus, the density of D can be estimated using the dif-

ferences between two samples of n and m. Given the

limited capability of climate models in representing

the real climate system, we only can give plausible dis-

tribution for future climate change. We cannot say the

absolute probability of climate changing by some exact

values. Instead we talk about the probability of climate

change being less than or greater than a certain value.

Following the approach employed in the fifth generation

of climate change information for the United Kingdom

(UKCP09) (Murphy et al. 2009), we apply the cumulative

distribution function (CDF) to define the probability of

a climate change being less than or greater than a given

amount, instead of using a probability density function

(PDF). In particular, we use a cumulative probability of

90% to describe probabilistic projections by saying very

likely to be less than or very unlikely to be greater than;we

use a cumulative probability of 10% to indicate very likely

to be greater than or very unlikely to be less than; and we

define the value with a cumulative probability of 50% as

the central estimate of projections (i.e., the median of the

distribution). For convenience, we use the term proba-

bility level rather than cumulative probability hereinafter.

TABLE 1. Twelve selected weather stations (UA denotes an upper air reporting station).

No. Weather station Longitude Latitude Abbreviation

001 Windsor Airport 828960W 428280N WDA

002 London Int’l Airport 818150W 438030N LIA

003 Toronto Lester B. Pearson Int’l Airport 798630W 438680N TLA

004 Toronto City Center (Island Airport) 798400W 438630N TCC

005 Ottawa Macdonald-Cartier Int’l Airport 758670W 458320N OMA

006 Wiarton Airport 818110W 448750N WTA

007 North Bay Airport 798420W 468360N NBA

008 Sault Ste Marie Airport 848510W 468480N SSA

009 Sioux Lookout Airport 918900W 508120N SLA

010 Timmins Victor Power Airport 818380W 488570N TVA

011 Big Trout Lake 898870W 538830N BTL

012 Moosonee UA 808650W 518270N MUA
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4. Results

a. Capability of hindcasting current climate

As mentioned above, a five-member subset was

screened out from the QUMP ensemble as boundary

conditions to drive five individual PRECIS runs. To

validate the capability of these five runs in simulating

key features of current climate over Ontario, we choose

12 weather stations (see Table 1) from the weather

and climate observing networks owned by Environ-

ment Canada to assess their overall performance. As

shown in Fig. 1, these 12 stations are spatially distrib-

uted across the landmass of Ontario, allowing for cap-

turing the spatial characteristics of model performance.

FIG. 2. Monthly means of Tmax at 12 weather stations.

5266 JOURNAL OF CL IMATE VOLUME 27



Monthly temperature means for the baseline period at

each weather station are calculated separately based

on the outputs of five PRECIS runs. We then draw

boxplots for monthly means of Tmax, Tmean, and Tmin

separately at the 12 stations. Observed means are plot-

ted over the corresponding boxplots to help us visually

check if the observed climate is well simulated by the

five-member ensemble.

Figures 2–4 show the boxplots for Tmax, Tmean, and

Tmin respectively. Observed monthly means of Tmax

and Tmean at 12 weather stations are well captured by

the aggregated simulations from the ensemble runs.

However, the ensemble simulations slightly overestimate

Tmin in some weather stations located in the middle

and northern areas. In particular, the observed means

of Tmin at stations SLA, TVA, and MUA for winter

FIG. 3. Monthly means of Tmean at 12 weather stations.
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(December–February) and spring (March–May) are

less than the lower bound of simulated results. Other-

wise, the observations are still fully covered by the in-

terval bounded by the maximum and minimum values

of five simulated values. Overall, the climate means

and patterns over Ontario can be smoothly reflected by

the PRECIS ensemble.

b. Posterior distributions at selected weather stations

By applying the Bayesian model, we derive posterior

distributions for all random parameters based on the

assumptions for the likelihoods and priors. Here we

focus on analyzing the MCMC results of all parameters

in terms of simulating three temperature variables

FIG. 4. Monthly means of Tmin at 12 weather stations.

5268 JOURNAL OF CL IMATE VOLUME 27



(i.e., Tmax, Tmean, and Tmin) at the 12 weather stations

under current and future climate forcings.

1) TEMPERATURE CHANGES

Figure 5 shows posterior distributions of m and n

for Tmax, Tmean, and Tmin at 12 weather stations.

In particular, we draw the density curves based on the

MCMC samples for each temperature variable at each

station. The true temperatures of present climate (i.e.,

m) are estimated with the simulation for the baseline

period, as illustrated by the top three plots. Likewise,

simulate results for 2020–49, 2040–69, and 2070–99

are used to estimate the true values of future climate

(i.e., n), as shown in the remaining nine plots. Even

though curves for 12 stations in each plot tell totally

different stories, the means for Tmax, Tmean, and

Tmin at all stations reveal consistently increasing trends

throughout the twenty-first century.

To further analyze the temperature changes (i.e.,

DT5 n2m) under future climate, we extract the esti-

mated values at three probability levels (i.e., 10%, 50%,

and 90%) for Tmax, Tmean, and Tmin at 12 stations.

Meanwhile, a 95% confidence interval (CI) is computed

to give an estimation for the range of values that is

likely to cover the possible changes under presumed

uncertainties (Goldstein and Healy 1995). The results

are listed in Table 2. Thus, we can interpret the tem-

perature changes at each station with the correspond-

ing confidence levels. For example, the Tmax change

at station WDA for the period of 2020–49 is very likely

to be greater than 2.648C and is very likely to be less

than 3.198C, while the median change tends to be 2.928C
and the likely range for Tmax change would be [2.91,

2.93]8C for the same period; the Tmean change at sta-

tion TCC under future climate of 2070–99 would be

around 5.628C and it is very likely to be greater than

FIG. 5. Posterior distributions of m (baseline period: 1961–90) and n (three future periods: 2020–49, 2040–69, and 2070–99) for Tmax,

Tmean, and Tmin at 12 weather stations.
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5.228C and less than 6.028C, while the credible esti-

mate of changing interval would be [5.60, 5.64]8C.
The results also report a gradient increase with time to

the change of each temperature index at each weather

station. For example, the median values of Tmean

change at all stations range from 2.668C (at SLA) to

2.988C (at MUA) for the period of 2020–49; the range

of these values for the period of 2040–69 would rise up

to [3.72, 4.76]8C, with the lower bound at BTL and the

upper one at MUA; to the end of the twenty-first cen-

tury, the change of Tmean would jump to as high as

7.218C at MUA, with the least change being 5.448C
at SLA.

2) MODEL RELIABILITY AND

INFLATION-DEFLATION EFFECTS

We use li to reflect the precision of each PRECIS

model run in terms of reproducing the current observed

climate, while an inflation/deflation parameter (u) is

introduced to represent its performance in simulating

climate under future forcing, with the form of uli.

Figures 6 and 7 present the posterior distributions for li
and u in the form of box plots, with logarithmically

scaled horizontal axes because of their high degree

of skewness (Tebaldi et al. 2005). In our analysis, li is

used as a scoring criterion to evaluate the overall per-

formance of each PRECIS run in terms of simulating

current climate forcing. It will be further treated as a

weighting coefficient to reflect the contribution of each

model run to the final combined estimate. However, li
here is a random variable with gamma posterior dis-

tribution; the scoring of five PRECIS runs should be

assessed through the relative positions of the box plots

at 12 stations, rather than by comparing point esti-

mates. To facilitate our analysis, we draw a vertical line

at 1 for each box plot in Fig. 6, which is helpful to com-

pare the overall performance of all model runs. Spe-

cifically, we use the location of the median line within

a box plot relative to line 1 to represent its relative

position. Evaluating the overall performance of a model

run may suggest a complete consideration of its in-

dividual precisions in reproducing the current climate

conditions of 12 weather stations. For example, a model

with box plots mostly distributed to the right side of 1

receives a higher score than the one with left-distributed

box plots gains. Thus, we can rank the precisions of

five PRECIS runs by computing the proportion of

stations with box plots shifted to the right (shown in

Table 3). For the run driven by HadCM3Q0, the pro-

portions for Tmax, Tmean, and Tmin are all as high as

100%, which leads to the highest rank in its overall per-

formance. By contrast, the run driven by HadCM3Q3
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FIG. 6. Posterior distributions of li at 12 stations. The three plots in the first row show the posterior distributions of l1 for Tmax, Tmean,

and Tmin, respectively, where the PRECIS is driven by the boundary conditions of HadCM3Q0. Similarly, the remaining four rows

contain box plots for l2, l3, l4, and l5, which are driven by HadCM3Q3, Q10, Q13, and Q15, respectively.
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gains the lowest rank because all box plots are dis-

tributed in the left side of 1. Among the remaining

three runs, the ones driven by HadCM3Q15 and Q13

are both well rated owing to their good performance in

more than half the stations (ranking second and third

respectively), whereas the one driven by HadCM3Q10

performs relatively poorly (ranking the fourth) in the

majority of the 12 weather stations.

The inflation/deflation parameter (u) is useful to

help understand if a well-performed model run in the

TABLE 3. Overall performance of five PRECIS runs. The model with a higher rank shows better performance than the one with a

lower rank.

PRECIS run ID GCM boundary condition

Proportion of stations with right-distributed box plots Rank of overall

performanceTmax Tmean Tmin

regaa HadCM3Q0 100% 100% 100% 1

regab HadCM3Q3 0% 0% 0% 5

regac HadCM3Q10 8.3% 8.3% 33.3% 4

regad HadCM3Q13 91.7% 66.7% 50% 3

regae HadCM3Q15 83.3% 83.3% 66.7% 2

FIG. 7. Posterior distributions of u at 12 stations for three future periods. For reference, we draw a vertical line at 1 to assess the consistency

of PRECIS model precision between control simulation and future simulation.
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control simulation period would behave similarly or

inversely in the future climate simulation. Figure 7

indicates that almost all of the weather stations re-

port varying levels of inflation in simulating the three

temperature variables, with an average inflation fac-

tor on the order of 10. It is very interesting to realize

that station MUA is the only exception, oppositely ex-

pressing a deflation behavior in the periods of 2040–69

and 2070–99. However, the deflation of this individual

station is not likely to squash or offset the overall mag-

nifying trend. The consistence of inflated performance in

eleven-twelfths of weather stations may imply that the

PRECIS model would project future climate with higher

precision than it does in the current climate simulation.

But this implication is conditional on our single-model

ensemble runs driven by the boundary conditions from

HadCM3; further exploration in terms of such inflation

or deflation effects can be done by combining different

RCMs and GCMs (Hewitt 2004; Kendon et al. 2010;

Mearns et al. 2009, 2012).

3) TEMPORAL CORRELATION

By introducing parameter b in the Bayesian model,

we are able to investigate the degree of correlation of

the model simulations between future climate (yi) and

current climate (xi). Figure 8 shows the distributions of

b at 12 weather stations for three temperature variables

and three future 30-yr periods, in the form of box plots.

It is noticeable that most of the mass of the posterior

densities is shifted in the right side of 0, with the mean

of median values concentrated around 1.4. This implies

a strong positive correlation between future climate

FIG. 8. Posterior distribution of b at 12 stations for three future periods. For reference, we draw a vertical line at 0 to help assess the

significance of correlation between yi and xi, and a vertical line at themean of 12median values in each plot to assess the significance of the

parameter magnitude.
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projections and controlled climate simulation in each

PRECIS experiment.

4) OBSERVATIONAL ERRORS

Figure 9 shows the posterior densities of l0, which is

introduced here to quantify the uncertainties in obser-

vational data owing to system errors or natural vari-

ability, at 12 stations for three temperature variables.

Similarly, we apply a logarithmically scaled axis in the

box plots to help understand how the mass of the pos-

terior densities is distributed. The plots for Tmax,

Tmean, and Tmin show different patterns at 12 sta-

tions, but there is a common left-shifting tendency from

Tmax to Tmean, then to Tmin while we compare the

mass distributions for these three variables one station

by one. Since l21
0 is referred to as the variance of ob-

servational data, bigger l0 suggests smaller variance and

better quality of the observed data used in our analysis.

Thus, these posterior distributions of l0 may give some

insights into the quality of observational data. For ex-

ample, the observation for Tmax used in this study is

more likely to be concentrated on the true value of cur-

rent climate with smaller deviation than the observed

Tmin.

c. Maps of projected temperature changes

The purpose of this section is to display a number of

maps to help understand the geographical patterns of

temperature changes across the domain of Ontario at

different probability levels. We calculates the changes

of three temperature variables at nine probability levels

(i.e., 10%, 20%, . . . , 90%) offline (the results can be

downloaded from http://env.uregina.ca/moe/pdownload/).

We here show the changes at 10%, 50%, and 90%

probability levels. The maps are at 25-km resolu-

tion covering the landmass and all water areas over

Ontario.

Figure 10 shows the projected changes of Tmax at

different probability levels. The central estimates of

change are projected to increase significantly with

time periods, and so are the changes at 10% and

90% probability levels. Specifically, in the period

of 2020–49, the central estimates of change are pro-

jected to be generally between 28 and 38C across most

of the province, with slightly larger changes in the

northeast next to the James Bay. The changes of

Tmax at 50% probability level in 2040–69 would go up

to [4, 5]8C in most of the domain. Furthermore, the

projected central estimates of change in 2070–99

would be as high as [6, 8]8C in the northeast, with

slightly smaller changes between 58 and 68C in the

southeast and the west of Ontario. It seems that the

projected changes are very unlikely to be less than 28C
(in 2020–49) and very unlikely to be greater than 108C
(in 2070–99).

The changes of Tmin, as shown in Fig. 11, reveal

similar patterns as those of Tmax, but with relatively

smaller magnitudes compared to the changes of Tmax.

The central estimates of changes in mean daily mini-

mum temperature are projected to be [2, 3]8C in 2020–

49, [4, 5]8C in 2040–69, and [5, 7]8C in 2070–99, re-

spectively. The changes in Tmin are very unlikely to be

less than 18C (in 2020–49) and very unlikely to be greater

than 108C (in 2070–99).

Figure 12 shows that, as with Tmax and Tmin, there

is a temporally gradient increase in terms of changing

magnitudes of daily mean temperature from 2020–49

to 2070–99. In addition, each map shows a gradient

FIG. 9. Posterior distribution of l0 at 12 stations. For reference, we draw a vertical line at 1 to help assess the significance of

the parameter magnitude.
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decreasing pattern for Tmean changes from the

northeast, where the central estimates of changes in

Tmean can be as high as 88C in 2070–99, to the

southwest, where the projected changes in the same

period at 50% probability level can be 68C or less.

Such a spatially distributed pattern may be somewhat

related to the large water bodies (i.e., Hudson Bay and

James Bay) surrounding most parts of northern

Ontario.

5. Summary and conclusions

In this study, we developed a high-resolution RCM

ensemble for the province of Ontario, Canada, by using

a subset of 17-member PPE ensemble from HadCM3

as boundary conditions to drive the PRECIS regional

modeling system from 1950 to 2099. An advancement

to the method proposed by Tebaldi et al. (2005) was

presented to facilitate the calculation of the probabil-

ities of temperature changes at grid point scale. The

advanced method treated the unknown quantities

of interest, such as observational errors, model re-

liability, and temporal correlation, as well as true cli-

mate signals, as random variables with uninformative

prior distributions. A Bayesian hierarchical model

was employed to quantify the uncertainties of these

quantities in a statistical framework based upon a

limited number of explicit assumptions. By feeding

the observations for current climate and simulations

from the RCM ensemble into the Bayesian model, we

obtained posterior distributions of all the uncertain

quantities of interest through MCMC simulations.

FIG. 10. Tmax changes at 10%, 50%, and 90% probability levels.
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Following that, we computed the probabilities of

changes in Tmax, Tmean, and Tmin at ;1800 25-km

grids for three 30-yr periods: 2020–49, 2040–69, and

2070–99. Posterior distributions for all uncertain

parameters at 12 selected weather stations were de-

rived and analyzed in detail to investigate the prac-

tical significance of the proposed statistical model.

We then presented maps of projected tempera-

ture changes at different probability levels to help

understand the spatial patterns across the entire

province.

The results show that there is likely to be a significant

warming trend throughout the twenty-first century over

Ontario. The central estimate of change in mean tem-

perature in 2020–49 would be 28–48C, but this value is

likely to increase dramatically in future time periods

(38–58C in 2040–69, and 58–88C in 2070–99). The maps

for Tmax and Tmin reveal the similar temporally in-

creasing trends in terms of the magnitude of change

from 2020–49 to 2070–99. In addition, there is obviously

a spatially gradient decrease in the changes of three tem-

perature variables from the northeast (with higher

changes) to the southwest (with lower ones). The prob-

abilistic projections suggest that people in Ontario are

very unlikely to suffer a change less than 28C to mean

temperature in the forthcoming decades and very un-

likely to suffer a change greater than 108C to the end of

this century.

The Bayesian hierarchical model presented here

is not restricted to the high-resolution PRECIS

ensemble developed for the province of Ontario. It

can be applied directly to other GCM or RCM

FIG. 11. Tmin changes at 10%, 50%, and 90% probability levels.
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ensembles to construct more reliable projections for

future climate change by quantifying related un-

certainties in a statistical framework, and thus to

provide useful information for assessing the risks and

costs associated with climatic changes at global and

regional scales.
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FIG. 12. Tmean changes at 10%, 50%, and 90% probability levels.
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APPENDIX A

Bayesian Model Formulation

1) Likelihoods for existing data x0, xi, yi:

x0;N(m, l21
0 )5

ffiffiffiffiffi
l0

p
ffiffiffiffiffiffi
2p

p exp

"
2
l0(x0 2m)2

2

#

xi ;N(m,l21
i )5

ffiffiffiffi
li

p
ffiffiffiffiffiffi
2p

p exp

"
2
li(xi 2m)2

2

#

yi;N[n1b(xi2m), (uli)
21]5

ffiffiffiffiffiffiffi
uli

p
ffiffiffiffiffiffi
2p

p exp

(
2
uli[yi 2 n2b(xi2m)]2

2

)

2) Prior distributions for parameters m, n, b, u, l0, l1, . . . , lN :

Assume uniform prior densities on the real line for m and n, uniform prior distribution on [21, 1] for b,

respectively. For the remaining parameters, we assume gamma distributions as follows:

l0;Gamma(m, n)5
nm

G(m)
lm21
0 e2nl

0

li ;Gamma(a, b)5
ba

G(a)
la21
i e2bl

i , i5 1, . . . ,N

u;Gamma(c, d)5
dc

G(c)
uc21e2du

3) Posterior is given by, up to a normalizing constant,

p(Q jD)5p(m, n,b, u, l0, l1, . . . ,lN jx0, x1, . . . , xN , y1, . . . , yN)

} p(m) � p(n) � p(b) � p(u) � p(l0) �P
N

i51
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�
2
l0
2
(x02m)2

�

Thus, we can obtain full conditional distributions for each parameter by ignoring all terms that are constant with

respect to the parameter:

Full conditional for u:

p(u jm, n,b,l0,l1, . . . ,lN , x0, x1, . . . , xN , y1, . . . , yN)

} P
N

i51

� ffiffiffi
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)
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Full conditional for b:

p(b jm, n, u,l0,l1, . . . , lN , x0, x1, . . . , xN , y1, . . . , yN)

} P
N
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Full conditional for l0:
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Full conditional for li, i5 1, . . . , N:
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Full conditional for m:
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APPENDIX B

Gibbs Sampling Algorithm

Step 1. Pick a starting value for the Markov chain:

(m, n, b, u, l0, l1, . . . , lN), say 
1

N
�
N

i51

xi,
1

N
�
N

i51

yi, 0, 0:9, 0:9, 0:7, . . . , 0:7

!
.

Step 2. Update each parameter in turn:

(i) Sample a value of u from its full conditional distri-

bution: p(u jm, n, b, l0, l1, . . . , lN , x0, x1, . . . , xN ,
y1, . . . , yN), using the most up-to-date values of all

the remaining parameters.

(ii) Sample a value of b from its full conditional distri-

bution: p(b jm, n, u, l0, l1, . . . , lN , x0, x1, . . . , xN ,
y1, . . . , yN), using the most up-to-date values of all

the remaining parameters.

(iii) Sample a value of l0 from its full conditional distri-

bution: p(l0 jm, n, b, u, l1, . . . , lN , x0, x1, . . . , xN ,
y1, . . . , yN), using the most up-to-date values of all

the remaining parameters.

(iv) Sample a value of li from its full conditional distribu-

tion: p(li jm, n, b, u, l0, l1, . . . , li21, li11, . . . , lN ,

x0, x1, . . . , xN , y1, . . . , yN), using the most up-to-

date values of all the remaining parameters. Re-

peat for i5 1, 2, . . . , N.

(v) Sample a value of m from its full conditional distri-

bution: p(m j n, b, u, l0, l1, . . . , lN , x0, x1, . . . , xN ,
y1, . . . , yN), using the most up-to-date values of all

the remaining parameters.

(vi) Sample a value of n from its full conditional distri-

bution: p(n jm, b, u, l0, l1, . . . , lN , x0, x1, . . . , xN ,
y1, . . . , yN), using the most up-to-date values of all

the remaining parameters.

Step 3. Repeat step 2M2 1 times to produce aMarkov

chain of length M.

APPENDIX C

MCMC Simulation

We run the Gibbs sampling for a total of 260 000 it-

erations for all parameters at each 25-km grid specified

by the PRECIS model. The first 10 000 iterations are

treated as random drawings in the burn-in period during

which the MCMC simulation forgets about the initial

values for all parameters. After that, we save only one

iteration result from every 50. Thus, we can get a total

of 5000 values for each parameter, representing a sam-

ple from its posterior distribution. Estimated changes of

Tmax, Tmean, and Tmin at nine probability levels

(10%, 20%, . . . , 90%) for three 30-yr periods (2020–49,

2049–69, and 2070–99), calculated based on the CDFs

of MCMC samples, are available online at http://env.

uregina.ca/moe/pdownload.
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