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Demonstrating the effect that climate change is having on regional weather
is a subject which occupies climate scientists, government policy makers and
the media. After an extreme weather event occurs, the question is often posed,
“Was the event caused by anthropogenic climate change?” Recently, a new
branch of climate science (known as attribution) has sought to quantify how
much the risk of extreme events occurring has increased or decreased due to
climate change. One method of attribution uses very large ensembles of climate
models computed via volunteer distributed computing. A recent advancement
is the ability to run both a global climate model and a higher resolution
regional climate model on a volunteer’s home computer. Such a setup allows the
simulation of weather on a scale that is of most use to studies of the attribution
of extreme events.
This paper introduces a global climate model that has been developed to
simulate the climatology of all major land regions with reasonable accuracy.
This then provides the boundary conditions to a regional climate model
(which uses the same formulation but at higher resolution) to ensure that
it can produce realistic climate and weather over any region of choice. The
development process is documented and a comparison to previous coupled
climate models and atmosphere only climate models is made. The system
(known as weather@home) by which the global model is coupled to a regional
climate model and run on volunteer’s home computers is then detailed. Finally,
a validation of the whole system is performed, with a particular emphasis
on how accurately the distributions of daily mean temperature and daily
mean precipitation are modelled in a particular application over Europe. This
builds confidence in the applicability of the weather@home system for event
attribution studies.
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1. Introduction

climateprediction.net is the largest ensemble climate
modelling experiment to date. Using distributed volunteer
computing (Anderson 2004), over 126 million years of
coupled atmosphere-slab ocean (Stainforth et al. 2005),
coupled atmosphere-ocean (Frame et al. 2009) and
medium-resolution atmosphere only (Pall et al. 2011)
models have been completed.

While very large ensembles of low-resolution climate
models have increased our understanding of key feedbacks
and large scale processes in the climate system (e.g.
Stainforth et al. (2005)), the real power of very large
ensembles lies in the potential to simulate extreme events
which, by their definition, are rare. To obtain statistics
on the magnitude and frequency of occurrence of extreme
weather events, large numbers of simulations of possible
weather under the same climate conditions need to be run to
assess the odds of such events. However, as most extreme
weather events occur on a relatively small spatial scale
high-resolution global or regional models are required to
realistically capture impact relevant extreme events.

Projects such as PRUDENCE (Jacob et al. 2007)
and ENSEMBLES (van der Linden and Mitchell 2009)
have produced multi-model ensembles of regional climate
models (RCM) with boundary forcings sourced from
difference global climate models (GCM). This has helped
increase our understanding of the sensitivity of the
climatology of the RCM to both its formulation and
its boundary forcings. However, to truly understand
the distribution of extreme weather events within these
RCMs, and to determine whether they have shifted under
anthropogenic climate change, requires an ensemble size in
the tens of thousands, rather than in the hundreds.

weather@home utilises the climateprediction.net volun-
teer distributed computing network to compute very large
ensembles of the HadRM3P regional climate model driven
by the HadAM3P atmosphere–only global climate model
(AGCM). HadAM3P is based on the coupled Hadley Centre
GCM HadCM3 (Pope et al. (2000), Gordon et al. (2000)),
which is, despite having had several successors, a remark-
ably good model in representing 20th century climatology
(Solomon et al. (2007), Lei et al. (2013), Collins et al.
(2001)).

In general, coupled–climate models show a westerly bias
in the zonal winds across the Atlantic and corresponding
blocking errors (Scaife et al. 2010). These errors are
largely due to biases in the sea–surface temperatures (SST)
in the North Atlantic (Scaife et al. 2011) and that in
eliminating these biases the zonal winds and blocking
errors are reduced. (Scaife et al. 2011) shows that these
errors in SST can be removed by either increasing the
resolution of the ocean in coupled–climate models or by
forcing an atmosphere only model with observed SSTs.
In this paper we show that, in comparison to HadCM3,
forcing a higher resolution atmosphere only model with
observed sea–surface temperatures (SSTs) and improving
its physics produces a better representation of large scale
weather events. The results of Scaife et al. (2010, 2011) thus
suggest that the model will represent an improvement over
coupled–climate models in general and HadAM3P’s ability
to simulate large scale events (Otto et al. 2012) indicate that
it is a good model to use to force the boundaries of a higher
resolution regional model.

Given the importance of the regional climatology of
the GCM used by weather@home, the first part of this
paper (Sections 2 to 3) describes the details of the
development and validation of the model over a single
historical run between 1961 and 1990. While previous
studies have established that specific individual weather
events are captured satisfactorily by the regional model (e.g.
Massey et al. (2012), Sparrow et al. (2013), Rupp et al.
(2012)), we show here that the improved resolution and
physics of the driving model have improved the climatology
of the global simulations. We demonstrate that with the
increase of the resolution of the atmosphere component of
HadCM3, HadAM3 simulates weather features that are not
represented in the low-resolution version. This is especially
the case for mid–latitudial climates where the representation
of winter storm tracks is improved, which is important for
the simulation of extreme precipitation events. However, the
increase in the resolution leads to a loss of compensating
errors and thus increases the temperature bias compared
to the lower resolution version. We reformulate some of
the sub–grid scale physics parameterisations and model
chemistry which produces an improved representation of
cloud cover which also, for example, results in a much
improved simulation of temperature extremes.

These advancements in the representation of the
immediate diagnostic variables such as temperature and
precipitation, and also in the representation of the large-
scale circulation, lead to confidence that the individual
weather events that are realistically represented in
HadAM3P are “right for the right reasons”. That is, they
are not a product of the cancellation of errors in the
tuning process, but are instead the realistic representation
of underlying physical processes. Thus, we conclude that
HadAM3P is a good tool to analyse large-scale extreme
weather events and provide boundary conditions to drive a
regional climate model. In this study we use the HadRM3P
regional model, which has essentially the same model
formulation and vertical resolution as HadAM3P, but
increases the horizontal resolution to either 50 or 25km.

The second part of this paper (Sections 4 to 5) details
how the distributed computing infrastructure is used to
run a large ensemble of both the GCM and RCM over
the same historical period used in the validation of the
GCM, 1961 to 1990. This ensemble is again validated with
respect to observations, with the aim of determining the
general suitability of using large ensembles of the model for
studies of extreme weather events, without concentrating on
a single event as in previous studies. It should be noted that
this validation section is not only checking the suitability of
the model, but the system as a whole, including the forcing
files used, the initial condition perturbation and the method
of using volunteer distributed computing to run the models.

This validation, analysis of the spread of the ensembles
and consistency check between the GCM and RCM reveals
that weather@home is indeed a good tool to investigate
changes and drivers of extreme weather events especially
in mid–latitudinal climates.

2. Model development

weather@home uses the HadAM3P atmosphere-only global
climate model (AGCM) and a regional climate model
(RCM) variant, HadRM3P, both from the UK Met
Office Hadley Centre. These models are based upon the
atmosphere component of HadCM3, a well documented and
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widely used coupled ocean-atmosphere model described in
Gordon et al. (2000). HadRM3P is the regional model used
in the Providing Regional Climates for Impacts Studies
project (PRECIS, Jones et al. (2004)), also originating from
the UK Met Office.

HadAM3P and HadRM3P (henceforth
HadAM3P/RM3P) share the same model formulation,
with the only differences being the spatial resolution,
timestep length and physical parameter values associated
with length scales. HadAM3P is integrated with a 15
minute timestep, has 19 vertical levels and a horizontal
resolution of 1.875◦ longitude and 1.25◦ latitude, which
approximates to grid boxes of length ∼ 150km at mid-
latitudes and ∼ 200km in the tropics. HadRM3P also has
19 vertical levels, but has a horizontal resolution of either
50km or 25km and a timestep of 5 minutes. HadAM3P’s
grid is defined as a regular latitude-longitude grid with
regular poles, whereas HadRM3P employs a rotated grid,
with artificial poles defined on a per-region basis so that
the region of interest lies along the equator in the rotated
grid. This ensures that each grid box in the region has
approximately the same area. Hassell and Jones (1999) and
Hudson and Jones (2002) show that the higher resolution of
a RCM can produce more realistic weather features, such
as tropical cyclones, that GCMs struggle to represent. Also,
Denis et al. (2003) show, in a study where they derived
coarse resolution boundary conditions from filtering high
resolution simulations that, up to a resolution difference
of 12 between an RCM and its driving data, the RCM can
reproduce realistic high resolution weather features seen in
the original simulation.

HadAM3P/RM3P is a grid-point model which solves
equations of motion, radiative transfer and dynamics
explicitly on the same scale as the grid. The atmospheric
equations are a quasi-hydrostatic version of the primitive
equations with full representation of the Coriolis force, as
described in Cullen (1993). Other, mostly thermodynamic,
processes which occur at the sub-grid scale are represented
by physical parameterisations. The vertical resolution of
HadAM3P/RM3P remains the same as HadCM3, although
the horizontal resolution increases two-fold for HadAM3P
and either 8-fold or 16-fold for HadRM3P.

2.1. Improvements to the HadCM3 model

The relatively low horizontal resolution of the atmospheric
component of HadCM3 (denoted HadAM3) contributes to
significant regional simulation biases which compromise
inferences made about regional climate change from using
the model. Increasing horizontal resolution substantially
reduces some of these biases, notably in extra-tropical sur-
face winds and temperatures during Northern Hemisphere
winter. However, some other aspects of model performance
are degraded because the increase in resolution upsets
balances between compensating errors present at lower
resolution. This can be reversed by making some significant
changes and improvements to the physical parameterisa-
tions in HadAM3, primarily to improve the simulation of
clouds and radiative fluxes while preserving the benefits of
higher resolution. With the new model formulation, denoted
HadAM3P, the primary surface variables of temperature,
precipitation and surface pressure are simulated better than,
or at least as well as, HadCM3 over all major continental
regions.

Details of these improvements are shown in Figures 1–5
and outlined in Sections 2.3.1 and 2.3.2. Section 3 provides
an overview of the potential effect of these improvements
on driving regional models, in that it shows reductions in
the root mean square error for a number of regions, when
comparing the new model formulation (HadAM3P) to the
previous formulation (HadCM3).

2.2. Description of the models and experiments

The models described here are based on the HadCM3
coupled model (Gordon et al. 2000). Its atmospheric
component, HadAM3, forms the basis of the model
development described below. HadAM3 is fully described
by Pope et al. (2000) and is generally applied on a regular
latitude/longitude grid of horizontal resolution 2.5x3.75◦

with 19 vertical levels. This will be referred to as standard
resolution. In an earlier version of the model, HadAM2b,
Stratton (1999) found an improved simulation of the North
Atlantic storm track in winter on increasing the horizontal
resolution to 0.833x1.25◦. In HadAM3, Pope and Stratton
(2002) show that most of the improvement found at
0.833x1.25◦ can be replicated at 1.25x1.875◦ and so we
choose this coarser resolution to limit the extra computing
resources required. Pope and Stratton (2002) investigated
the impact of increasing vertical resolution from 19 to
30 levels, finding mixed benefits. Moist and cold biases
in the upper troposphere were reduced, but some aspects
of the tropical climate were simulated less well due to a
deterioration of the performance of the convection scheme.
In view of this we decided not to increase vertical resolution
in HadAM3P, although the potential improvements from
doing so are being investigated as part of the strategy for
developing new climate models in the Hadley centre (Johns
et al. 2006).

In our 1.25x1.875◦ version of HadAM3 (hereafter Hi-res
HadAM3), the time step is 15 minutes for both dynamics
and physics, c.f. 30 minutes at standard resolution. The
physical parameterisations are identical to HadAM3, and
the dynamical formulation is identical apart from resolution
dependent adjustments required for the calculations of
diffusion and gravity wave drag. HadAM3P consists of Hi-
res HadAM3 augmented by a number of changes to the sub–
grid scale physics and chemistry, listed below.

2.2.1. Calculation of cloud cover

In HadAM3 the cloud cover and cloud water content in
a grid box are both calculated from a saturation variable
qc defined as the difference between total water (i.e.
water vapour + liquid + ice) and the saturation vapour
pressure (Smith 1990). When provided with observed grid
box values of total water and temperature the Smith
scheme reproduces observed cloud water contents quite
well but underestimates cloud cover, based on data from
stratocumulus regions and the upper troposphere (Wood
and Field 2000). More generally, HadAM3 reproduces the
effects of clouds on the global radiation budget quite well,
but through a compensation of errors in which insufficient
cloud cover tends to be offset by excessively high cloud
optical thicknesses. One reason for this is that clouds
are assumed to fill the entire volume of a model layer,
neglecting the possibility of thin layers of cloud associated
with sub-grid scale variations in cloud water in the vertical.
We address this by introducing a modification in which
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HadCM3 HadAM3 Hi-res HadAM3 HadAM3P HadRM3P

Model type AOGCM AGCM AGCM AGCM RCM
Resolution 2.5x3.75◦ 2.5x3.75◦ 1.25x1.875◦ 1.25x1.875◦ 0.44x0.44◦

Scale at mid–lat 300km 300km 150km 150km 50km
Vertical levels 19 19 19 19 19
Time step 30 mins 30 mins 15 mins 15 mins 5 mins
Improved physics No No No Yes Yes

Table I. Summary of models discussed in this study. AOGCM = coupled atmosphere–ocean GCM, AGCM = atmosphere only GCM. Improved
physics indicates that the model has the improvements to the sub–grid scale physics and chemistry detailed in Section 2. Scale at mid–lat is the
width of a grid box at 45◦N.

the cloud scheme is called for three sub-layers within each
model grid box, calculating cloud cover from values of qc
for each sub-layer obtained by vertical interpolation. Areal
cloud cover for the grid box is taken as the maximum
of the values found in the three sub-layers, generally
resulting in larger values (with corresponding reductions in
optical thickness) compared with results from the standard
parameterisation used in HadAM3.

2.2.2. Specification of relative humidity threshold for
cloud formation, Rhcrit

It is assumed that the sub-grid scale distribution of qc

can be represented by a symmetric triangular function
(Smith 1990) which depends on Rhcrit, the grid box
mean relative humidity above which cloud begins to form.
These assumptions allow cloud fraction (C) to be specified
as a quadratic spline passing through the points (RH=
Rhcrit, C=0), (RH=1,C=0.5), (RH=1+ Rhcrit, C=1). A
fixed value of Rhcrit is specified for each model level in
HadAM3: at standard resolution this ranges from 0.95 in
the lowest layer to 0.7 for layers in the free atmosphere.
However, Cusack et al. (1999) argued that the assumption
that Rhcrit does not vary in time or with geographical
location is unrealistic. Based on evidence from aircraft
observations and high resolution analyses for numerical
weather prediction Cusack et al. (1999) proposed that σclim,
the standard deviation of qc within a climate model grid box,
can be parameterised in terms of σ3x3 the standard deviation
of qc over neighbouring grid boxes. Specifically

σclim = A(p) ∗ σ3x3

where A(p) is a coefficient which varies with pressure (i.e.
model level) but has no geographical or time dependence.
Cusack et al. (1999) found that using this relation to predict
σclim (and hence Rhcrit) led to reduced biases in cloud and
relative humidity in the upper troposphere in the standard
resolution version of the model. Here we assess this Rhcrit

parameterisation in the higher resolution HadAM3, using
values of A(p) appropriate for a 150km grid (S. Cusack,
pers. comm.).

2.2.3. Improved calculation of the radiative effects of
convection

The parameterisation of convection in HadAM3 calculates
a cloud fraction which is assumed constant between the
diagnosed cloud base and cloud top. This approach takes
no account of anvil clouds, leading to an underestimation

of high cloud of intermediate optical thickness and an
overestimation of high, optically thick cloud (Ringer and
Allan 2004). In order to rectify this, HadAM3P includes
a set of empirical modifications developed by Gregory
(1999), which are informed by basic observed properties
of anvils as ice clouds which form in the presence of deep
convection and tend to have their bases at the freezing
level. When deep convection occurs, the modified scheme
increases cloud fraction linearly with height from the
freezing level to the cloud top to represent the anvil,
and decreases cloud fraction to a constant value below
the freezing level to represent the convective tower. Deep
clouds are defined as those having their bases in the
boundary layer and their tops above the freezing level. If
convection is not diagnosed as deep then no change is made
to the calculation of cloud fraction used in HadAM3.

In addition, simulated convective cloud water amounts
are too large in HadAM3. The Gregory (1999) modifica-
tions address this by reducing the values of cloud water used
in the calculation of radiative transfer. This is done partly
by excluding convective precipitation from the water path
(because rain drops are much less radiatively active than
smaller cloud droplets), and also by introducing a scaling
factor which accounts crudely for concentration of cloud
water in a small fraction of the cloud associated with the
convective updraught.

2.2.4. Additional minor changes

In HadAM3 the land surface is coupled to the underlying
soil by a heat conduction term. This is appropriate for a
bare soil surface but leads to an underestimation of the
diurnal cycle for vegetated surfaces. In HadAM3P vegetated
surfaces are assumed to be coupled radiatively to the
underlying soil. This weakens the coupling between the
ground and surface air temperatures (Best and Hopwood,
2001), leading to an improved diurnal cycle and the
removal of unrealistic peaks in the frequency distribution
of minimum temperatures associated with soil freezing in
winter. HadAM3 occasionally simulates unrealistically high
surface temperatures in arid regions. This occurs because
the model only updates radiative fluxes every three hours,
preventing rapid rises in surface temperature driven by
strong solar heating from being simultaneously offset by
increases in long wave cooling. This problem does not
arise in non-arid areas where there is sufficient moisture
to allow evaporation to limit the increase in temperature.
In HadAM3P the upward surface long wave radiation flux
is updated every model timestep (fifteen minutes), thus
removing this unrealistic behaviour.
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Precipitation is assumed to fall on a fraction of a model
grid box in HadAM3. The specified fractions influence
the land surface hydrology, including the partitioning of
evaporation between surface evapotranspiration and free
evaporation from a wet vegetated canopy (Dolman and
Gregory, 1992). Values of 0.4 (for convective precipitation)
and 0.5 (for large scale precipitation) were found to
be appropriate for the spatial resolution of HadAM3P,
based on results obtained by spatial aggregation of
instantaneous precipitation fields from regional climate
model simulations.

2.3. Experimental design of climate simulations and
sensitivity tests

Three types of experiments are assessed in this Section. In
order of increasing length these are: sensitivity tests of 18
to 42 months to check the effect of changing individual
model components; short, decadal-scale, climatological
tests for the period 1980-1990 to check the effect of
multiple changes; and long climate simulations to provide
a comprehensive assessment of model performance for
the period 1961-1990. At the ocean surface, the lower
boundary condition is provided by monthly values of
global sea–surface temperature and sea-ice concentrations
from the HadISST1 reconstruction of Rayner et al.
(2003). The experiments presented below with the standard
and high resolution versions of HadAM3 and the tests
involving the changes to the large–scale cloud scheme and
multiple physics changes all use this period. Only results
from HadAM3P and HadCM3 use the standard 30 year
climatological period. For the sensitivity tests, the first 6
months are used to spin the model up and is not considered
in any subsequent analysis, and these are used to assess
the seasonal or annual impact of individual physics changes
such as changes in precipitation efficiency on cloud water.

2.3.1. Model response to changes in formulation

The initial change applied to HadAM3, a doubling of the
horizontal resolution, significantly improves the realism
of the winter storm tracks in both hemispheres with a
pole–ward migration improving their position and reducing
high polar pressure biases. In the case of the Northern
Hemisphere (Figure 1), this reduces both a significant high
latitude easterly bias and North Eurasian cold bias. With
the full package of changes in HadAM3P (bottom panels of
Figure 1) both of these biases are reduced further though
with an increase in the area of warm bias over North–
East Asia and North America. In the Southern Hemisphere
summer Figure 1, the resolution increase has little impact
but the other changes in HadAM3P warm Australia, either
reducing cool or increasing warm biases, and Southern and
equatorial Africa to reduce or remove cool biases.

Also apparent from Figure 1 is the impact of using
observed SSTs and sea–ice. The second panel demonstrates
that they are responsible for part of the improvements
in the Northern Hemisphere winter–time circulation. This
was confirmed in the results of a sensitivity experiment
(not shown) where high resolution HadAM3 used SSTs
and sea–ice from the parallel HadCM3 integration. In this
experiment the improvements seen in Figure 1 panel 3 were
not realised. This was due to the excessive sea–ice extents
simulated by HadCM3 reducing temperatures in polar
regions and leading to a high pressure bias. (Interestingly,

the opposite situation occurred in the previous Hadley
Centre coupled model, HadCM2, where too little Artic sea–
ice gave rise to the removal of a high pressure bias seen in
HadAM2 and thus realistic storm tracks in HadCM2.)

In Northern Hemisphere summer the impact of resolution
increase is not similarly neutral or beneficial. There are
improvements in circulation (not shown) though the main
impact is the worsening of warm biases over all of Eurasia
and North America south of 50N (Figure 2). This develops
because the increase in resolution upsets a balance of errors
operating in HadAM3. The cloud scheme underestimates
cloud cover (Figure 2), but this is partly compensated by
other biases, notably excessive cloud water contents and
an insufficiently vigorous hydrological cycle. Increasing
horizontal resolution leads to an intensification of the
hydrological cycle via stronger vertical motions resulting in
reductions in atmospheric relative humidity (not shown) and
more heavy precipitation events. This results in even lower
cloud cover (Figure 2) leading to excessive surface solar
heating and hence an increased surface warming which
worsens warm biases seen in these regions in HadAM3.
With the full package of changes in HadAM3P the negative
bias in clouds is significantly reduced almost everywhere
as are the Northern Hemisphere warm biases. However,
due to the simulated clouds having more realistic (lower)
optical thicknesses, those Northern Hemisphere regions
with insufficient cloud still have warm biases. In other
regions, tropical Africa and Australia in winter, these lower
optical thicknesses result in reduced cool biases (Figure 2).

As a result of the increase in resolution, but more so from
the other changes in HadAM3P, precipitation is reduced
over most land areas. For most of the Northern Hemisphere
summer this reduces wet biases (Figure 3) though also
increases dry biases in west Asia and eastern North America
which could also be contributors to the warm biases in
these regions through lowering available soil moisture for
evaporative cooling at the surface.

2.3.2. Effects of changing the model physics

The Rhcrit parameterisation introduces significant inhomo-
geneity into the the spatial distribution of Rhcrit. It gives
higher values than the level–constant values of HadAM3 in
most regions and significantly so in much of the stratosphere
and tropical troposphere (not shown). This significantly
changes cloud distributions in most regions, for example
with large reductions in the lower tropical troposphere (Fig-
ure 4). It also reduces upper tropospheric moist biases which
reduces a positive bias seen in the simulation amounts
of the cirrus clouds. Another specific cloud change is a
reduction in high-top optically thick midlatitude clouds,
again reducing a positive bias. The impact of the change
to the improved cloud fraction calculation is, as expected,
mainly to increase cloud amounts (with the biggest signal
in the lower troposphere at high latitudes) and to reduce
cloud optical thicknesses. It has a large impact on low–
top clouds, significantly increasing the medium thickness
clouds in this category (and so removes nearly all of the
HadAM3 error) as well as reducing the thick clouds which
are also improvements (Figure 4). It also increases mid–
top thin and intermediate thickness clouds which again are
improvement though it does increase high–level thin clouds
which is a degradation.

The effects of the Rhcrit parameterisation and the
cloud fraction modification combined is to significantly
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6 N. Massey et al.

Figure 1. Errors in December–January–February (DJF) mean sea level pressure, left column, and surface air temperature, right column, for (from top to
bottom) HadCM3, HadAM3, HadAM3 at double horizontal resolution and HadAM3P. The circulation biases are calculated with respect to the ERA15
reanalysis (Gibson et al. 1997) and the land-surface temperature biases with respect to the CRU-TS dataset (Mitchell and Jones 2005).

increase cloud cover outside the tropics to more realistic
values. This provided a substantial cooling in summer,
eliminating the Northern Hemisphere positive biases but
introducing an overall cool bias and a negative top of
the atmosphere radiation bias. The latter comes from
a remaining positive bias in cloud optical thicknesses
resulting from two factors, excessive cloud droplet number
concentrations and cloud water/ice contents. The former
resulted from assuming, in HadAM3, an unrealistically high

value for this quantity hence reducing the droplets effective
radii and thus increasing the cloud brightness for given
amounts of cloud water. This problem is overcome as a
consequence of introducing a representation of the sulphur
cycle, as one aim of this is to predict atmospheric aerosol
concentrations. This then determines the concentration of
cloud condensation nuclei (CCN) which control the size of
cloud droplets (and thus cloud brightness, the first indirect
effect of aerosols). With the sulphur cycle parameterisation
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Figure 2. As Figure 1 but for June–July–August (JJA) cloud fraction, left column, and surface air temperature, right column. The cloud fraction biases
are calculated with respect to data from the ISCCP (International Satellite Cloud Climatology Project) dataset (Rossow and Schiffer 1999) and the
land-surface temperature biases with respect to the CRU-TS dataset (Mitchell and Jones 2005).

predicting realistic CCN concentrations (Jones et al. 2001),
the brightness of clouds was immediately reduced to more
realistic values. To reduce the excessive cloud water and
ice concentrations, the rate at which cloud liquid water is
converted to precipitation (Ct) was increased as was the fall
speed of ice (VF1), an example of the effect of the former in
reducing medium and thick clouds is shown in Figure 4.

The above cloud changes refer to the calculation of large–
scale (or stratiform) clouds, i.e. those due to large-scale
dynamical processes. Similar problems of insufficient cloud

extents but excessive cloud brightness were also present
in the HadAM3 representation of convectively generated
clouds. The low cloud extents are due to a lack of vertical
variation of cloud amount in HadAM3, i.e. there is no
representation of the amount of deep convective, or anvil,
clouds increasing with height. The excessive brightness
of convective clouds in HadAM3 is due to unrealistic
amounts of cloud water. The introduction of the convective
anvils allowed an appropriate choice of the shape of deep
convective clouds allowing improved cloud extents (not
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8 N. Massey et al.

Figure 3. Errors in JJA precipitation for HadCM3 and HadAM3 (top row) and HadAM3 at double horizontal resolution and HadAM3P (bottom row)
The land-surface precipitation biases are calculated with respect to the CRU-TS dataset (Mitchell and Jones 2005) and those over the tropical oceans
with respect to the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP), (Xie and Arkin 1997).

shown) and also their impact on long–wave and short–
wave cloud forcing in the tropics where anvil clouds
dominate radiative balance. The anvils thus largely remove
compensating excessive incoming shortwave and outgoing
long–wave radiation fluxes (Figure 5). Reductions in
convective cloud water were obtained by the improvements
in the representation of convective updrafts.

The combined effects of the changes described above
results in significant differences between HadAM3 and
HadAM3P in clouds and their interaction with radiation.
In order to generate a realistic global radiation balance
(an important constraint on the system) and long–wave
and short–wave cloud forcings (crucial factors in the
models response to climate change) further fine–tuning
of cloud parameters was performed. Thresholds for the
conversion of cloud water to precipitation were increased
over land and reduced over sea for both large–scale
and convective precipitation. This reflects the significantly
higher concentration of aerosols and thus CCNs over land
and thus the higher total volume of water that can be
supported within clouds (i.e. as smaller droplets) before
forming precipitation. This tends to increase cloud lifetimes
over land whilst decreasing them over sea. The combined
effect of these and the other changes on cloud forcing are
shown in Figure 5. Shortwave cloud forcing is improved
over land compared to high-resolution HadAM3 (large
positive biases in the Northern Hemisphere are reduced)
and over sea compared to HadCM3 (large negative biases,
especially in the North Pacific, are reduced). Long-wave
cloud forcing is improved generally with respect to both
models, with significant improvements in the tropics due to
the representation of convective anvils in HadAM3P.

The improvements in the coupling between the soil and
the land-surface and the treatment of surface radiation

fluxes have had little effect on the mean climatology
of HadAM3P. However, they have substantially improved
the simulation of temperature extrema. For example, in
many areas significant biases in diurnal temperature range
in HadAM3 (both at standard and high resolution) are
removed in HadAM3P (not shown).

3. Results from model development

3.1. Comparison of model surface climatologies

In this Section we concentrate on comparing HadAM3P
with the model it is designed to replace in terms of providing
boundary conditions for regional climate modelling, i.e.
HadCM3. Qualitatively, much of this comparison has
already been described in the preceding section and so here
we just provide some quantitative summary measures of
the difference in performance of the two models. Given
the intended focus of work with this model being on the
regional implications of climate change we concentrate on
assessing biases in the main surface variables of mean sea
level pressure, temperature, precipitation and cloud cover.
The first provides a measure of the realism of the large–
scale circulation patterns in the models and thus acts as a
check on the models ability to correctly simulate the drivers
of regional weather phenomena. The second and third are
the primary variables of interest when considering potential
impacts of climate change. Another important variable in
this context is also surface radiation for which reliable
globally extensive observations are not available and so
we use the closely related variable of cloud cover (which
itself is often used to derive surface radiation changes in
modelling impacts).

Table II compares the global skill of the two models
in terms of their root mean square errors. Mean sea
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Figure 4. Differences in three optical thickness categories of ISCCP low cloud for JJA, comparing (from top to bottom) HadAM3 with observations
and HadAM3P and then assessing the effect of the improved cloud fraction calculation, the Rhcrit scheme and the effect of increasing Ct. The cloud
thickness biases are calculated with respect to data from the ISCCP dataset (Rossow and Schiffer 1999).

level pressure is compared with the global fields from
the ERA15 reanalysis (Gibson et al. 1997) and the other
variables are compared with land–only data of the CRU-
TS dataset (Mitchell and Jones 2005). This shows that
HadAM3P clearly performs as well as and mostly better
than HadCM3. More specifically, HadAM3P significantly
outperforms HadCM3 except for precipitation where the
models have similar skill. The more similar behaviour
for precipitation is mainly due to the effects noted in

the previous section for boreal summer over the Eurasian
and North American continental interiors where large
temperature and precipitation biases at high resolution
in HadAM3 are only partially compensated for by the
improved physics in HadAM3P.

This picture is further confirmed when repeating the
analysis over individual continental regions (Table III).
For each region HadAM3P performs better overall. Across
the eight season/variable combinations, HadCM3 only
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10 N. Massey et al.

Figure 5. Errors in JJA shortwave (left) and longwave (right) cloud forcing in W/m2 in HadCM3 (top) and HadAM3 at double horizontal resolution
(middle) and HadAM3P (bottom) The cloud forcing biases are calculated with respect to data from the ERBE (Earth Radiation Budget Experiment)
dataset (Ramanathan et al. 1989).

performs better for one or two and HadAM3P for four
or five. The only exception is North America where the
models skill is more comparable, with HadCM3 better in
two cases and HadAM3P in three. Finally, when comparing
the models in terms of the different variables, HadAM3P is
clearly superior in all but precipitation where again, on this
regional analysis, their performance is comparable.

4. Setup of the distributed computing experiment

The previous Sections (2 and 3) detail the development of
the HadAM3P model, which is shown to produce a realistic

climate over a number of regions. With the increase in
computing power, it is now possible to run this model on
a home PC, coupled via the lateral boundary conditions to
a regional model variant, HadRM3P. Using the distributed
computing network of climateprediction.net (CPDN) allows
for many thousands of these models to be run on volunteer’s
home computers. This Section outlines the architecture of
the distributed computing network and, by considering the
GCM, RCM and distributed computing network as a single
system, details an experiment to determine the system’s
suitability for use in probabilistic event attribution studies.
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DJF JJA

HadCM3 HadAM3P HadCM3 HadAM3P
Mean sea level pressure (hPa) 3.15 2.96 3.05 2.73
Surface air temperature (K) 3.55 2.89 2.41 2.19
Precipitation (mm/day) 1.47 1.49 2.33 2.28
Fractional cloud cover 0.19 0.14 0.16 0.13

Table II. Root mean square errors in HadCM3 and HadAM3P for the two extreme seasons of December, January, February (DJF) and June, July,
August (JJA) for various surface fields. Errors are calculated at land points only for all but the first quantity. See text for the observational datasets.
Figures are given in bold where the rms error for that model is 90% or less of the value for the other model.

DJF JJA

HadCM3 HadAM3P HadCM3 HadAM3P
Europe=[-30,30,60,70]
Mean sea level pressure (hPa) 5.40 2.32 3.12 3.20
Surface air temperature (K) 4.84 2.67 2.66 2.54
Precipitation (mm/day) 0.64 0.69 0.58 0.71
Fractional cloud cover 0.16 0.14 0.18 0.16

Asia=[60,10,175,70]
Mean sea level pressure (hPa) 2.98 3.09 4.78 5.35
Surface air temperature (K) 4.40 3.45 2.46 2.13
Precipitation (mm/day) 0.58 0.70 2.18 2.05
Fractional cloud cover 0.13 0.11 0.16 0.13

Africa=[-15,-35,50,35]
Mean sea level pressure (hPa) 2.13 2.29 2.91 2.73
Surface air temperature (K) 1.96 1.73 1.88 2.15
Precipitation (mm/day) 1.27 1.06 3.33 3.36
Fractional cloud cover 0.16 0.17 0.20 0.20

N America=[-160,30,75,60]
Mean sea level pressure (hPa) 3.09 2.25 2.49 2.85
Surface air temperature (K) 3.43 2.53 2.31 2.53
Precipitation (mm/day) 0.87 0.88 0.66 0.74
Fractional cloud cover 0.13 0.12 0.18 0.15

S America=[-80,-55,-35,10]
Mean sea level pressure (hPa) 2.88 3.09 2.03 2.24
Surface air temperature (K) 2.53 2.09 2.80 1.86
Precipitation (mm/day) 2.41 2.52 2.42 2.47
Fractional cloud cover 0.18 0.11 0.30 0.18

Australia=[110,-40,150,-10]
Mean sea level pressure (hPa) 1.84 3.11 2.42 1.56
Surface air temperature (K) 1.50 1.60 1.96 1.43
Precipitation (mm/day) 1.48 1.13 0.51 0.45
Fractional cloud cover 0.09 0.11 0.11 0.10

Table III. As Table II but for individual regions. The region definitions are given as the [W,S,E,N] corners of a rectangular latitude–longitude box
in degrees.

This experiment mirrors that used in Section 3 and so a

direct comparison between those results and results from

the HadAM3P/RM3P models running under the CPDN

infrastructure can be made.

4.1. Required inputs to the models

While running under the distributed network,
HadAM3P/RM3P requires a number of inputs, which
must be supplied to the volunteer’s computers. These
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include the initial condition of the model and, as the model
is atmosphere only, forcings are required at the sea–surface
boundary, in the form of sea–surface temperatures (SST)
and sea-ice fraction (SIF). Atmospheric concentrations of
the well-mixed greenhouse gases are required, including
carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4)
and the halocarbons (CFC113, CFC11, CFC12, HCFC22,
HFC124 and HFC134A). Ozone (O3) concentrations are
required as zonal averages at each model level and the
inputs to the sulphur cycle are also required.

4.2. Distributed computing

To enable the computation of large ensembles of the GCM
and RCM, volunteer distributed computing (VDC) is used.
climateprediction.net (CPDN) uses VDC to great effect,
generating very large ensembles of coupled slab layer
ocean and atmosphere models (Stainforth et al. 2005), high
resolution atmosphere only models (Pall et al. 2011) and
coupled atmosphere–ocean models (Rowlands et al. 2012).

CPDN uses the Berkeley Open Infrastructure for
Network Computing (BOINC; Anderson (2004)) to
leverage the idle computing power of volunteers in a client /
server model. Each volunteer signs up to the CPDN project
via the BOINC client software, which then downloads
the GCM and RCM to the volunteer’s computer. CPDN
scientists control the project’s servers, which hand out
workunits to volunteer’s client computers. Each workunit
contains all the information needed by the climate models to
run an experiment for a certain period of model time, under
a specified climate scenario. weather@home builds upon
CPDN’s success to use the same infrastructure to compute
large ensemble simulations using the HadAM3P/RM3P
models. The model integrations described in this paper are
performed under a climate scenario designed to replicate the
historical period of 1961 to 1990.

Unfortunately, not all workunits that are sent out by the
server are completed by the clients. The failure to complete
a workunit can be due to a number of factors, including
unstable hardware, failure of hardware or termination of
the workunit by the volunteer. The ratio of the number
of sent out to completed workunits is called the attrition
rate. Previous CPDN studies have shown that workunits
with the lowest attrition rate take approximately one week
to complete (Christensen et al. 2005), which equates to
about one model-year of HadAM3P/RM3P integration and,
therefore the workunit length in weather@home is set to be
one model-year.

4.3. Model coupling

Under weather@home, HadAM3P/RM3P run on the same
client computer in an interleaved manner. The GCM
(HadAM3P) runs first for one full model day, providing
the lateral boundary conditions (LBCs) to the RCM
(HadRM3P) which also runs for one full model day. The
coupling between the GCM and RCM is strictly one-way, in
that the GCM feeds the RCM but there is no feedback from
the RCM to the GCM. The RCM defines a four point buffer
zone around the perimeter of the region. The main variables
comprising the LBCs (atmospheric pressure at the surface
along with horizontal winds, temperature and humidity for
all atmospheric layers) are relaxed across the buffer zone to
values temporarily interpolated from 6 hourly output from
the GCM.

4.4. Model initial conditions

As mentioned above, the distributed system runs the
HadAM3P/RM3P models for one year at a time, in a
time-slice manner. In order to produce a timeseries of
integrated models, a continuation system is used. Initially,
the project creates a pool of workunits, each with the same
generic starting conditions, at five-yearly intervals. These
workunits are handed out to client computers, integrated
over the model year under the specified climate scenario,
and the results from the integration are returned, along
with the final state of the model. This final state is then
incorporated into a new workunit describing the next year
of the climate scenario, using this final state as the starting
condition. This process is repeated with the final states of
the subsequent integrations, enabling a timeseries of climate
model integrations to be built from the single-year runs.

As noted above, each initial pool of workunits, which
are created at five-yearly intervals have the same, generic
initial condition, which is the state of the model at the
1st December 1968, after 9 years of integration under an
observed climate forcing scenario. Integrating the model to
this time produces an initial condition which is close to the
climatology of the 20th Century. In order to produce the full
range of internal variability that is possible with the model,
each workunit defines an initial condition perturbation
which is applied to the generic starting conditions for
the GCM. There is no perturbation applied to the RCM.
The initial condition perturbation is drawn from a large
set of possible perturbations defined as deltas in potential
temperature and calculated from next day differences within
a year long integration of the GCM. The perturbation is
calculated as a fully three dimensional field, with a scaling
function applied for all levels above a certain level in
the models atmosphere. This is to ensure that there is no
perturbation at the top of the atmosphere and so the top of
atmosphere flux is not influenced too greatly. The scaling
function has the form:

S = 1−
sin(Zc − Z0)

Nz − Z0

where Zc is the level at which the scaling is applied, Z0

is the level above which no perturbation occurs and Nz

is the number of levels in the model’s atmosphere. The
maximum amplitude of the perturbation is also limited
to 5K to minimise the risk that a large perturbation in
potential temperature could lead to an instability in the
model. Finally, five global scaling factors are applied to
the perturbations to generate a set of 1740 initial condition
perturbations, from which the workunits can draw from.
These initial condition perturbations are only specified for
the original pool of workunits that have the generic starting
condition and no perturbations are applied to the starting
conditions used in the continuation process, so as to allow
continuous integrations of models under a specific climate
scenario.

Computing the climate models via VDC also adds
the potential for perturbations to arise from the variety
of computing platforms that the models will run on.
weather@home supports Linux, Mac OS X and Microsoft
Windows platforms and requires an Intel–compatible CPU.
This allows for many permutations of operating system,
CPU manufacturer and CPU model. A previous CPDN
study using the HadCM3 coupled GCM (Knight et al. 2007)
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found that this perturbation due to platform differences has
approximately the same influence as an initial condition
perturbation.

4.5. Forcings at the (sea-)surface

As both the GCM and RCM are atmosphere-only models,
they both require forcings at the boundary between
the atmosphere and ocean in the form of sea–surface
temperatures (SSTs) and sea-ice fractions (SIFs). These
quantities are defined per grid box for the GCM, with the
RCM using the same field interpolated to the finer grid.

For the historical 1961 to 1990 climate scenario described
in this paper, HadISST1 (Rayner et al. 2003) is used to
provide both the SST and SIF fields. HadISST has been
specifically designed to drive atmospheric climate models
(Rayner et al. 2003) and is used in the ERA-40 reanalysis
for the 1958 to 1981 period (Uppala et al. 2005). After 1981,
the NOAA/NCEP 2D-Var dataset (Reynolds et al. 2002) is
used in ERA-40 for the SST and SIF fields. HadISST also
provides boundary layer forcings for the regional model in
the PRECIS system (Jones et al. 2004), which uses the same
HadRM3P model as weather@home. HadISST is provided
as a global coverage dataset, for non-land points only, as
monthly means with a spatial resolution of 1◦ × 1◦. In order
to use this data to drive the HadAM3P/RM3P model, it must
be regridded to the GCM resolution of 1.875◦ × 1.25◦. This
is performed by an area–weighted averaging method. The
discrepancy between the HadAM3P and HadISST land-sea
masks (LSM) will cause missing data to be present in the
regridded data. This is dealt with by assigning any grid box
where missing data occurs with the mean of the surrounding
grid boxes which themselves do not have missing data.

In addition to the spatial regridding, the HadISST data
is also temporarily regridded. Woollings et al. (2010) show
that the North Atlantic storm track in high resolution
atmosphere only climate models is sensitive to the temporal
resolution of the forcing SSTs, and that by increasing the
temporal resolution from monthly mean values of SST to
weekly mean values, an improvement is made to storm track
density, matching ERA-40 more closely. As the SST values
in HadISST are monthly, the actual weekly values of the
SSTs cannot be recovered or reconstructed. However, the
interpolation method of Sheng and Zwiers (1998) is used
to recover some of the variability from the time series of
monthly mean SSTs and SIFs.

HadAM3P/RM3P interpolates monthly values of SST
and SIF to daily values using a simple linear interpolation
scheme. Such a scheme has two disadvantages: the mean
of the daily values will not equal the original monthly
mean and the interpolated values are smoothed, losing
inter-month variability (Sheng and Zwiers 1998). Applying
this method overcomes these problems by adjusting the
values of the monthly means, then linearly interpolating
between the adjusted values, in the case of weather@home,
to 5 day means. The adjusted mean values are derived by
constraining the interpolated values over a month so that
the mean of interpolated values for that month is equal to
the original monthly mean. This temporal interpolation is
performed offline, forming SST and SIF files for a single
year, which then becomes part of the workunit describing
the climate scenario for that year.

4.6. Atmospheric composition

In the distributed experiment, the concentrations of CO2,
CH4 and N2O follow the timeseries of the observed
quantities in the IPCC 4th Assessment Report (AR4,
Solomon et al. (2007)). The halocarbon gases (CFC113,
CFC11, CFC12, HCFC22, HFC124 and HFC134A) are
represented as a single value per timepoint in the timeseries,
which produces the equivalent radiative forcing as if all
6 gases were modelled. Ozone (O3) also follows the
observations from AR4, including the appearance of the
ozone hole in the 1980s.

4.7. Additional climate drivers

The standard inputs to the HadAM3P/RM3P sulphur cycle
scheme are the surface anthropogenic emissions of SO2,
elevated emissions (e.g. from a chimney stack) of SO2

which are released at a higher model layer than the surface,
natural emissions of SO2 from regularly erupting, but small
scale, sources and natural emissions of DMS, primarily
from phytoplankton in the ocean. An extra modification
to HadAM3P/RM3P for weather@home is the addition
of large scale volcanic eruptions emitting large quantities
of SO2. These large natural emissions are modelled in
four latitude bands, with a value prescribed for each band
for each model year. Input files are required for the five
emission types above, as well as the 3D fields for the
oxidisation variables. Figure 6 shows the timeseries of the
modification to the optical depth due to volcanic activity.

Figure 6. Increase in optical depth due to volcanic activity in four latitude
bands

weather@home also applies a small modification to
HadAM3P to account for variations in solar activity by
allowing anomalies from the solar constant to be specified.
These anomalies are taken from Krivova et al. (2007) which
take into account the 11 year solar cycle as well as longer
timescale solar processes. Figure 7 shows the timeseries of
the anomaly to the solar constant.

Figure 7. Anomaly to the solar constant, based on Krivova et al. (2007)

5. Results from the distributed computing experiment

Using the experimental setup detailed in Section 4,
approximately 500 ensemble members per year have been
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Figure 8. Ensemble mean of the temperature bias in the weather@home global HadAM3P model with respect to CRU-TS.

computed, for the historical period of 1961 to 1990.
This Section analyses the results from those model runs,
firstly in a manner similar to Section 2, examining the
bias in the GCM and RCM seasonal mean temperature
and precipitation variables. The distribution of the global
and regional model’s daily temperature and precipitation
variables are then examined so as to determine their
suitability for use in a probabilistic event attribution study.
In this paper a subset of 25 ensemble members per year is
used, for the period 1961 to 1990, giving a total ensemble
size of 750 over the 30 year period. The ensemble members
in the subset are chosen randomly, with each ensemble
member having equal chance of being chosen to be part of
the subset. The large ensemble capacity of weather@home
is of most use when examining extreme weather events
which, by their very nature, are rare and require a large
ensemble to generate examples of the event. Conversely,
to characterise the climatology and overall distribution of
climate variables over a 30 year period a much smaller
ensemble is required.

Between the results from the model development in
Sections 2 and 3 and the launch of weather@home, there
was a gap of around 5 years. During this period an
error was found and corrected in the representation of
one of the soil properties affecting the mobility of soil
moisture. Thus, in addition to presenting results from the
entire weather@home system, this Section demonstrates
the impact of this change, along with running these
models on different computing platforms compared to the
supercomputer on which the initial configurations were
tested.

5.1. Global model

Analysis of the GCM follows the analysis in Sections 2 and
3, in that the bias between the seasonal mean of the model
and the seasonal mean of CRU-TS is calculated for each

ensemble member, and then the ensemble mean of these
biases is produced. Figures 8 and 9 are directly comparable
to Figures 1, 2 and 3 as the same colour schemes and
observational datasets are used. Throughout this Section,
the HadAM3P model running under weather@home will be
denoted HadAM3P-W@H, whereas the model development
version from Section 2 will be denoted HadAM3P-MD.

Figure 8 shows the ensemble mean of the bias in the near–
surface temperature of HadAM3P-W@H, when driven with
HadISST SSTs and historical atmospheric forcings over the
period 1961 to 1990, as detailed in Section 4.

In the Northern Hemisphere winter (DJF), there are
large temperature biases over Greenland, Eastern and Arctic
Russia, China, South Asia and South Africa, as well as
the Western edge of the Americas. Biases over Europe,
Scandinavia and Northern Africa are much lower, with
some errors over the Alps. This indicates that the HadAM3P
GCM is suitable for driving the HadRM3P RCM over
the European domain. Compared to the same season in
Figure 1 HadAM3P-W@H shows the same pattern of bias
as HadAM3P-MD, with some reduction in bias over Eastern
Europe and an increase in bias over Arctic Russia. Table IV
indicates that, globally, there is more bias in HadAM3P-
W@H (with an RMSE score of 3.77) than HadAM3P-MD
(2.19), whereas for the European domain, there is less bias
in HadAM3P-W@H (2.17) than in HadAM3P-MD (2.67).

In the Northern Hemisphere summer (JJA), there are
large warm biases over the United States of America, and
the Caspian and Black Sea areas of Europe. Although
the patterns are largely similar, these specific locations
have biases that are greater in HadAM3P-W@H than
in HadAM3P-MD. Comparing Tables II and IV shows
that, globally, there is a similar error in HadAM3P-W@H
(RMSE of 2.27) as in HadAM3P-MD (2.19) but that over
the European domain HadAM3P-W@H (2.86) performs
worse than HadAM3P-MD (2.54). When run as part of the
weather@home system, it is expected that these biases will
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be propagated to HadRM3P, impacting the performance of
the RCM over Europe.

Biases in Spring (MAM) and Autumn (SON) are less
than in DJF or JJA, with SON showing a cold bias over
Greenland which, although large, is not as large as the
cold bias over Greenland in DJF. MAM shows a warm bias
over Northern Canada and some cold bias over Greenland.
These smaller biases are confirmed by the RMSE which,
for both seasons, are less than DJF and JJA over both the
global domain and the European domain. This leads to the
expectation that biases in MAM and SON in HadRM3P
should also be low.

Figure 9 shows the ensemble mean of the bias in
precipitation in HadAM3P-W@H over the 1961 to 1990
period. For the Northern Hemisphere Winter (DJF) there
are large dry biases over the Amazon, Greenland, Indonesia
and Madagascar. However, over Europe there is a mix of
a small wet bias (up to 1mm/day) in Western Europe, a
slight dry bias (up to -1mm/day) in some areas of Southern
Europe and the UK and very little bias in Eastern Europe.
Globally, in DJF, HadAM3P-W@H has a smaller RMSE
(1.32) than HadAM3P-MD (1.49). However, over Europe
the RMSE are much more similar (HadAM3P-W@H: 0.71,
HadAM3P-MD: 0.69).

In the Northern Hemisphere Summer (JJA), HadAM3P-
W@H has large dry biases over Columbia, Venezuela
and Central America, a dry bias over the Eastern USA
and dry biases over Western Africa, South East Asia
and Indonesia. Europe shows a slight dry bias (up to -
1mm/day) with a slight wet bias (up to 0.5mm/day) over
Spain and Scandinavia. This is a very similar pattern of
bias as in HadAM3P-MD, shown in Figure 3, with an
improvement to the bias over Eastern Europe and the Alps.
This improvement is quantified by comparing the RMSE of
HadAM3P-MD in Tables II and III and HadAM3P-W@H
in Table IV. Globally, HadAM3P-W@H (RMSE of 1.62)
has less bias in precipitation than HadAM3P-MD (RMSE
of 2.19). However, over the European domain the scores are
much more similar (HadAM3P-W@H: 0.80, HadAM3P-
MD: 0.71). This is due to the improvement in the bias
over Eastern Europe in HadAM3P-W@H being outside the
domain used to calculate the European RMSE. However,
both models have a low RMSE.

Bias in Spring (MAM) and Autumn (SON) are similar
to those in JJA and DJF, with MAM having dry biases in
Southern America and Indonesia and a wet / dry bias in
Africa. SON also has a dry bias in Indonesia, with further
dry biases in Central America and South East Asia. Both
seasons have a dry Greenland. Globally, MAM has an
RMSE (1.53) less than JJA (1.62) and SON has an RMSE
(1.32) equal to DJF. Over the European domain, MAM has
the lowest RMSE (0.50) of all the seasons and SON has
an RMSE (0.67) greater than this but less than DJF and
JJA. Overall the error in precipitation over Europe is in
line with both HadAM3P-MD and HadCM3, except for JJA
whose larger error is likely to be due to the warm bias in
temperature in that season.

5.2. Regional and global model over European domain

Section 5.1 evaluated the bias in the GCM component of
weather@home for the entire globe. This Section examines
the biases in the RCM modelling a European domain, and
compares these biases to the same spatial domain in the
GCM. This evaluation serves two purposes. Firstly, to check

MAM JJA SON DJF

Global domain
Air temperature (K) 1.91 2.27 2.17 3.77
Precipitation (mm/day) 1.53 1.62 1.32 1.32

Europe=[-30,30,60,70]
Air temperature (K) 1.54 2.86 1.40 2.17
Precipitation (mm/day) 0.50 0.80 0.67 0.71

Table IV. Root Mean Square Errors (RMSE) in the HadAM3P GCM
model running as part of the weather@home system, for all seasons,
with respect to the CRU-TS dataset. Both the RMSE over the global
domain and over Europe are given. Values in bold are 90% or less of the
corresponding values in Tables II and III. Values in italic are 110% or
more of the corresponding values.

that there is consistency between the GCM and RCM, in
that the patterns of biases are largely the same and that the
RCM does not introduce any new biases into the domain.
Secondly, to determine whether the RCM has less or more
bias overall than the GCM within the European domain.

Figure 10 shows the results of this comparison for
seasonal mean temperature biases with respect to CRU-
TS (Mitchell and Jones 2005). The GCM and RCM are
largely consistent over the European domain in all seasons.
In MAM, there is a reduction in the cold bias of the
GCM in the RCM over Iceland and Western Norway. Some
additional cold bias is present at the eastern edge of the
domain in the RCM. In JJA there is an increase in the
RCM of the warm bias over the Balkans (west of the Black
Sea), over Northern Europe and over the alps. In SON there
is again a reduction in the cold bias seen in the GCM
over Western Norway and also a reversal of the cold bias
over Italy. In DJF, the RCM shows a reduction in the cold
bias over regions in Southern Europe that are close to the
Mediterranean Sea and a reduction in the cold bias over
Northwest Russia. However this is balanced by an increase
in the warm bias over Norway and a slight increase in the
warm bias over Central Europe.

Table V provides a more quantitative assessment of these
findings. Computing the root mean square error (RMSE) for
biases in both the GCM and RCM, for each season, it shows
that there is less overall error in the RCM than in the GCM
for every season except for JJA.

Figure 11 shows the comparison between the HadAM3P
GCM and the HadRM3P RCM for biases in seasonal mean
precipitation over the European domain, with respect to
CRU-TS. As with the temperature biases, there is largely
agreement between the GCM and RCM, with the location
and magnitude of the precipitation biases remaining the
same. Table V provides a quantitative assessment of these
errors, by computing the RMSE for the biases in both the
GCM and RCM. Unlike the temperature, there is actually an
increase in the error in the precipitation when dynamically
downscaling from the GCM to the RCM.

These results are consistent with the performance of
the HadAM3H RCM run of the PRUDENCE project
(Jacob et al. 2007), which compares a number of RCMs
driven by the same boundary conditions. In particular,
HadRM3P shows the same warm and dry bias in JJA in
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Figure 9. Ensemble mean of the precipitation bias in the global HadAM3P model with respect to CRU-TS.

a b c d

Figure 10. Ensemble mean of the temperature bias in the regional HadRM3P model (top row) and global HadAM3P model (bottom row) with respect
to CRU-TS.

the Mediterranean and Eastern Europe as HadRM3H (Jacob
et al. (2007), Figure 3).

5.3. Distribution of daily variables in the regional and
global model over the UK and Ireland

While Section 5.1 evaluated the weather@home system
over a global scale for seasonal means of climate variables
and Section 5.2 examined the biases in the RCM, also
for seasonal means, the extreme events which probabilistic
event attribution is interested in occur on smaller spatial

scales and shorter timescales, typically a single day to a
week. In light of this, this Section evaluates the system’s
ability to represent the distribution of daily temperature and
precipitation values over a region encompassing the land–
points of the UK and Ireland.

As Section 5.2 shows, there is some small improvement
to the temperature bias in the RCM, when compared to the
GCM, and a small increase to the precipitation bias. In light
of this, it would be reasonable to ask what the added value
of the regional model is. In this Section we show that, by
moving away from just considering climatological seasonal
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a b c d

Figure 11. Ensemble mean of the precipitation bias in the regional HadRM3P model (top row) and global HadAM3P model (bottom row) with respect
to CRU-TS.

MAM JJA

HadAM3P HadRM3P HadAM3P HadRM3P
Air temperature (K) 1.60 1.41 2.73 2.97
Precipitation (mm/day) 0.48 0.87 0.75 0.84

SON DJF

HadAM3P HadRM3P HadAM3P HadRM3P
Air temperature (K) 1.68 1.27 2.80 1.92
Precipitation (mm/day) 0.62 0.89 0.68 1.07

Table V. Root Mean Square Errors (RMSE) for the global HadAM3P and the regional HadRM3P models, over the European domain, as modelled
in HadRM3P. The HadAM3P data has been remapped to the HadRM3P rotated grid and domain before the RMSE calculation.

means, the RCM improves the modelling of the distribution
of the daily temperature and precipitation variables.

Figures 12 and 13 show quantile–quantile plots (Q–
Q plots), comparing the distribution of the daily mean
temperature and daily mean precipitation in the large
ensemble of RCM and GCM runs to the distribution of these
variables in the E-OBS dataset (Haylock et al. 2008), over
the UK and Ireland. In this Section, the same ensemble as
in the previous Sections is used, with the corresponding
observations taken from 1961 to 1990 from E-OBS. In
effect we are comparing two ensembles to the observations:
an ensemble of GCMs and an ensemble of RCMS, which
have been driven at the LBCs by the GCM. To construct
the distribution of the variables from the large ensemble,
daily values are recovered from every ensemble member at
every grid box that is land in the UK and Ireland region.
The models use a 360 day year and, therefore, across
the 750 member ensemble, values at 270,000 instances
of the UK and Ireland domain are produced. HadAM3P
has 18 grid boxes in this domain, whereas HadRM3P has

136 grid boxes. For the ensemble, this produces 4,860,000
values from the GCM and 36,720,000 from the RCM.
Such large sets of values ensures that the ensemble is truly
representative of the behaviour of the model, allows the
extreme values in low and high percentiles to be captured
and also enables testing of statistical significance.

In order to compare this high temporal and spatial res-
olution model ensemble to the real world, an observa-
tional dataset with similar temporal and spatial resolution
is needed. We have chosen the E-OBS dataset (Haylock
et al. 2008) for this part of the analysis as it is available
on the same rotated grid (50km, 0.44◦) as the RCM,
meaning that no remapping of the observation to model
grid is needed. For the GCM, E-OBS is also available on
a regular latitude–longitude grid at 0.5◦ resolution. In order
to compare this to the GCM, a remapping to the GCM grid is
required. For daily mean temperature this is done by bilinear
interpolation. For daily mean precipitation, this is done by a
conservative remapping scheme that ensures the same total
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amount of precipitation is in the remapped data as is in the
original data.

Figures 12 and 13 feature a solid line and an envelope.
The solid line contains the values at the percentiles for
the whole ensemble – i.e. all 750 members. The envelope
shows the 5th to 95th percentile range for the values at
each percentile when considering each ensemble member.
So, for example, the value at the 50th percentile will have
750 potential values (one from each ensemble member) and
the 5th and 95th percentile of these 750 values is found.
This allows both the uncertainty and internal variability of
the model to be assessed.

In order to quantify the differences in how well the
modelled distribution of the climate variable matches the
observed distribution, the root mean square difference
(RMSD) of the values at the 1st to 99th percentiles is used.
This can be expressed by:

RMSD =
1

99

√

(

p=99
∑

p=1

(op − ep)
2
)

where op is the value at the pth percentile in the
observations and ep is the value at the same percentile in
the ensemble. In Table VI this RMSD is calculated for the
percentile values computed for all ensemble members, i.e.
the solid line in Figures 12 and 13.

Figure 12 shows the quantile–quantile plots for daily
mean temperature over the UK and Ireland in both the
RCM and GCM, for all four seasons. In MAM there is a
good correspondence between the observed and ensemble
quantile values for both the RCM and GCM. This is
confirmed in Table VI, with both the GCM and the RCM
having an RMSD of 0.04, for all percentiles. In the higher
percentiles, the GCM and RCM also have a very similar
performance, with an RMSD of 0.31 for the RCM and
0.30 for the GCM. However, in the lower percentiles the
RCM (0.22) does peform better than the GCM (0.37). There
is a greater spread in the ensemble values for the higher
percentiles than for the lower and middle percentiles, but
this spread is similar between the RCM and GCM.

In JJA the RCM actually performs worse than the GCM,
for higher and middle percentiles. This reduction in skill
corresponds to the increase in bias in the RCM of the
monthly mean temperatures, as seen in Table V. For all
percentiles, the RMSD increases from 0.10 for the GCM
to 0.12 for the RCM. However, in the upper percentiles,
the difference is more apparent, with the RMSD increasing
from 0.98 to 1.17. There is a much larger spread in
the values at the higher percentiles than in the lower
percentiles, although the spread over all percentiles remains
much the same between the GCM and RCM. For the
higher percentiles, the spread is asymmetrical, with the 99th
percentile having ensemble members with a much lower
value than the value derived from all ensemble members.
This indicates that the model is capable of producing a
wide range of mean temperatures in JJA, Therefore, to fully
sample all of the weather patterns that could produce these
mean temperatures, a large ensemble is necessary.

In SON, both the RCM and GCM perform similarly,
with the RCM having the better performance in the lower
percentiles. For all percentiles, the RMSD reduces from
0.17 to 0.13. For the upper percentiles (90th+), the RCM
also has a slightly lower RMSD (0.29) than the GCM (0.31).
Again, the upper percentiles have more of a spread in values

than the lower percentiles, with the GCM having a slighter
wider spread of values in the lower percentiles than the
RCM.

For DJF, both the RCM and GCM show good skill
in modelling the percentile values, with the RCM having
slightly more skill, especially in the lower percentiles.
This is confirmed by the RMSD scores of 0.10 for all
percentiles in the GCM and 0.03 in the RCM. For the higher
percentiles, the regional model (0.12) has higher skill than
the GCM (0.17). Most importantly, for a season where one
extreme weather event of interest is very cold temperatures,
the RMSD for the lower percentiles in the RCM (0.10)
is much lower than in the GCM (0.82) indicating that the
RCM has much more skill in representing very cold days at
the correct frequency, when compared to the observations.

Figure 13 shows the quantile–quantile plots for precip-
itation in the RCM and GCM for all seasons. Unlike the
daily mean temperature, which shows an improvement in
modelling the percentile values for all seasons except JJA,
the percentile values for precipitation show little improve-
ment in the RCM compared to the GCM, except for JJA. As
Table VI shows, the RMSD for all percentiles is much the
same for the RCM and GCM in MAM and DJF. In JJA the
RCM (0.13) performs better than the GCM (0.19), whereas
in SON the RCM (0.18) performs worse than the GCM
(0.14). In the higher percentiles (90th to 99th) the RCM
performs better in MAM, JJA and DJF, but worse in SON.

The largest improvement to the modelling of precipita-
tion in the RCM occurs during the JJA season. Despite
there being a similar warm bias in the seasonal mean
temperatures over much of the region, as show in Figure 10
and Table V and a dry bias in the seasonal mean precip-
itation (Figure 11), the RCM has a distribution of daily
mean precipitation that matches the observed distribution
much more closely than in the GCM, although there is still
considerable bias. This is confirmed in Table VI where the
RMSD for all percentiles in the GCM is 0.19 and the RCM
is 0.13. In the higher percentiles this improvement is even
more apparent, with a RMSD of 1.68 in the GCM and a
RMSD of 1.02 in the RCM. This shows that the increase
in resolution in the RCM has a positive effect on modelling
the daily mean precipitation, even though the same biased
surface temperature as in the GCM is being used as drivers,
both at the sea–surface boundary and the lateral boundaries.

Although, as discussed above, the performance of the
RCM in representing the distribution of daily mean
precipitation is worse than the GCM in MAM, SON and
DJF, Figure 13 shows that the bias in the RCM is much
more consistent than the bias in the GCM. The RCM
consistently under–predicts the precipitation (the model is
too dry) across all percentiles, whereas the GCM under–
predicts in lower percentiles and over–predicts (the model
is too wet) in higher-percentiles in DJF and MAM. This
consistency of the RCM is an advantage as it allows for the
use of a straight–forward scaling and offset bias correction
to be used (Massey et al. 2012), whereas the inconsistency
of the GCM may require a more complicated bias correction
method.

6. Discussion and conclusion

In the distributed computing project weather@home,
the atmosphere only Hadley Centre model HadAM3P
is coupled to a higher resolution regional equivalent,
HadRM3P, which was produced as part of the UK Met
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a b

Figure 12. Quantile-quantile plot of the distribution of daily mean temperature in the regional model (top row) and the global model (bottom row)
compared to the distribution of daily mean temperature in the E-OBS dataset over the UK and Ireland. The black line shows the quantile values for the
entire ensemble. The red envelope shows the 5th to 95th percentile range of values for individual ensemble members.

a b

Figure 13. Quantile-quantile plot of the distribution of daily mean precipitation in the regional model (top row) and the global model (bottom row)
compared to the distribution of daily mean precipitation in the E-OBS dataset over the UK and Ireland. The black line shows the quantile values for the
entire ensemble. The blue envelope shows the 5th to 95th percentile range of values for individual ensemble members.

Office PRECIS project. The distributed computing used to
simulate large ensembles with perturbed initial condition
requires the use of a relatively old modelling base, the
Hadley Centre HadCM3 model, which has the advantage
of only requiring a small memory footprint when running
on a typical home computer. The changes made in
producing the HadAM3P model from this model base
include improvements to the resolution and model physics
(Sections 2 and 3). These changes result in improvements
to the climatology compared to other models derived from
the same modelling base. HadCM3 is still a very successful
model, despite its age, and is included in both the CMIP5
multi-model ensemble and the IPCC AR5 report. HadCM3
is shown to have errors on a par with other members of
the CMIP5 ensemble when comparing the global seasonal-
cycle climatology with observations from 1980 to 2005
(Stocker et al. (2013), Figure 9.7). Furthermore, Sillmann

et al. (2013) show that HadCM3 is competitive with other
CMIP5 models when evaluating climate extreme indices,
with the exception of consecutive wet and dry days and
variables related to the diurnal cycle. This performance
of HadCM3, along with the improvements in HadAM3P
related to the diurnal cycle and SST biases, gives confidence
to the competitiveness of the weather@home modelling set-
up.

The modelling system as a whole is a powerful tool to
understand changes in weather events all over the world
and also allows attribution studies to be conducted with
respect to different external drivers of the climate system.
Although this paper has concentrated on the European
region, weather@home currently has six regions being
modelled by HadRM3P. In order to make the most of these
opportunities, the regional climate model data produced
by the six regions are hosted and analysed by experts
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MAM JJA

HadAM3P HadRM3P HadAM3P HadRM3P
Mean air temperature (K) all 0.04 0.04 0.10 0.12
Mean air temperature (K) 1–10th 0.37 0.22 0.05 0.01
Mean air temperature (K) 90th+ 0.30 0.31 0.98 1.17

Precipitation (mm/day) all 0.07 0.06 0.19 0.13
Precipitation (mm/day) 90th+ 0.50 0.27 1.68 1.02

SON DJF

HadAM3P HadRM3P HadAM3P HadRM3P
Mean air temperature (K) all 0.17 0.13 0.10 0.03
Mean air temperature (K) 1–10th 1.27 0.75 0.82 0.10
Mean air temperature (K) 90th+ 0.31 0.29 0.17 0.12

Precipitation (mm/day) all 0.14 0.18 0.05 0.07
Precipitation (mm/day) 90th+ 1.03 1.11 0.37 0.30

Table VI. Root Mean Square Difference (RMSD) for all percentiles from 1 to 99 for the daily mean air temperature and precipitation over the UK
and Ireland (all), the 1st to 10th (1–10th) and for the 90th to 99th percentiles (90th+).

of the respective region: Europe (Oxford, UK), Western
US (Oregon, USA), South Africa (Cape Town, South
Africa), Australia and New Zealand (Melbourne, Tasmania,
Wellington) and South Asia (Pune, India). It is an aim of the
project to extend the network of regions to cover all parts
of the land surface of the Earth. The collaborative network
makes it not only feasible to store and analyse the large
amount of data generated by this approach but also ensures
that experts of different regional climates will be involved
in future development of the modelling system.

weather@home uses just one GCM driving a single
RCM. The CORDEX project (Giorgi et al. 2009) aims to
understand some of the uncertainties in regional modelling
by comparing many RCMs driven by both observations
and output from multiple GCMs. Although weather@home
is not part of CORDEX, it is aligning itself with the
methodologies of CORDEX as closely as possible. For
example, the European domain presented in this paper
has the same rotated pole as the CORDEX domain and
contains the agreed common interior. The Australia and
New Zealand domain is the same as the Australasia
domain in CORDEX and the South Asia domain in
weather@home is identical to the CORDEX South Asia
(SASIA) domain. This aligment with CORDEX will enable
our collaborators to compare results with other models and
to determine where the weather@home RCM output fits
into the distribution of the multi-model ensemble members
in CORDEX.

In conclusion, the modelling approach is an excellent
tool to analyse statistics of regional extreme weather events.
The driving model has biases in surface temperatures
with larger biases in boreal Winter and Summer in the
Northern Hemisphere but the representation of precipitation
is exceptionally good with respect to the dynamics and
physics represented in the model. This produces an
accurate representation of the distribution of the daily mean
precipitation values, and an accurate account of the high
precipitation values which would be classed as an extreme

event. The strength in the representation of precipitation in
the model, despite the presence of relative high biases in
surface temperatures in some regions, shows that the model
is not sensitive to biases in the external drivers. The fact
that the individual weather events which are realistically
represented in HadAM3P are “right for the right reasons”,
and not a product of the cancellation of errors in the
tuning process, indicates that the results of weather@home
simulations are comparable to state of the art global climate
model simulations. Furthermore the distributed computing
approach allows for the simulation of very large ensembles
of global and regional climate, thus statistics of weather
events can be obtained. This allows for the analysis of the
frequency of occurrence of extreme events, which would
be impossible with ensembles smaller than of the order
of 100. The analysis of the spread of the ensembles and
consistency check between the global and regional model
reveals, in addition, that weather@home is also a good tool
to investigate changes and drivers of extreme weather events
especially in mid–latitudinal climates, rendering the set-up
ideal for probabilistic event attribution.
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